A Novel Method for Measuring Oxygen in Processing Applications ICBC September 15, 2011

Roy Johnson Beverage Sales Manager Haffmans NA

Agenda

- Pentair and Pentair-Haffmans background
- Optical oxygen technology
- Why and where to measure oxygen
- What is TPO and new differentiated technology
- Optical oxygen management Tools Overview
- Conclusion

Pentair CPT

Pentair welcomes Clean Process Technologies!

As of May 12, the companies under Clean Process Technologies (CPT) — Filtrix, Haffmans, Nijhuis, Pentair Components & Services, Pentair Process Technology, Südmo and X-Flow — became part of Pentair's Filtration Solutions global business unit.

Pentair is a global diversified industrial company headquartered in Minneapolis. With revenues of about \$3 billion, Pentair employs approximately 14,500 people worldwide.

Pentair CPT

Pentair Filtrix

Pentair Haffmans

Pentair Nijhuis

Pentair Process Technology

Pentair Südmo

Pentair X-Flow

Pentair CPT Companies

Pentair Südmo offers an extensive range of sanitary and aseptic valves and fittings, complete manifolds, design review and superior customer service for the food, dairy, beverage, pharmaceutical and consumer products industries.

Pentair Filtrix develops and manufactures innovative point-of-use and point-of-entry water purification products based on membrane and activated carbon technologies.

Pentair Haffmans develops and supplies quality control equipment and total CO2 and O2 management systems for the brewing and beverage industries.

Pentair Nijhuis develops, manufactures and supplies centrifugal high performance pumps, and pumping systems for the water, wastewater, fire fighting, steel, paper, chemical, marine, and dredging industries.

Pentair X-Flow develops, manufactures and supplies membranes for municipal and industrial applications, including potable water, process water, wastewater treatment, water for re-use and desalination.

Pentair Process Technology

Pentair Process Technology engineers and supplies Beer Membrane Filtration technology and state-of-the-art breweries.

Pentair Haffmans

Pentair Haffmans has 60 years of experience in providing CO₂ and O₂ management, quality control equipment and green CO₂ recovery systems.

Headquarters - Venlo, The Netherlands

Major Industries Served

- Brewing
- Beverage
- Wineries & Distilleries

Did you know that ...

... Pentair Haffmans can recover CO₂ in breweries and beverage plants, distilleries, wastewater treatment plants, and in biogas plants ... and that the recovered green CO₂ is food-grade and suitable for use

Products

- Quality Control Instruments
- CO₂ Recovery
- CO₂ & O₂ Management

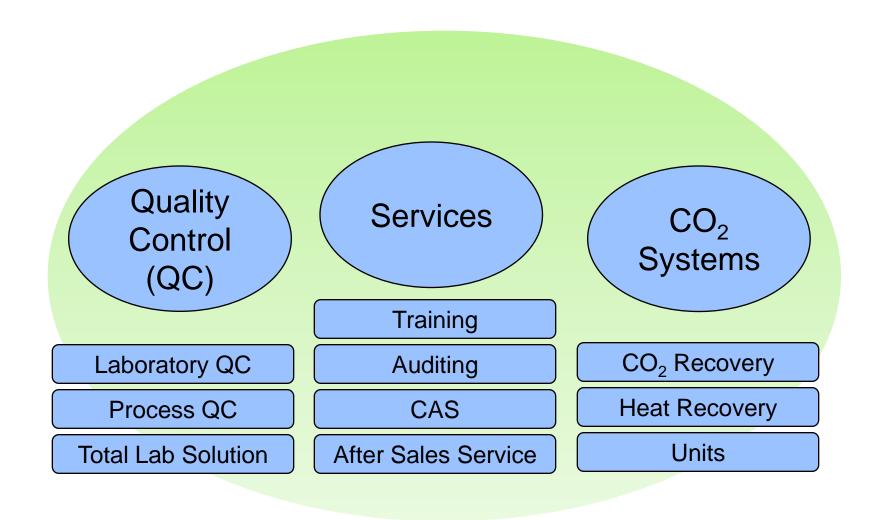
Industries

Pentair Haffmans technologies are applied in more and more markets!

Mineral water

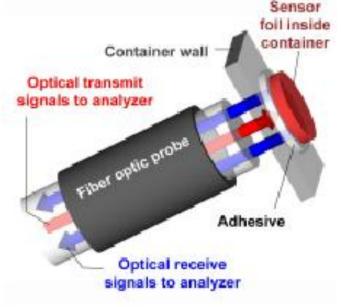
Soft drink

Desalination


Wine & Cider

Bio-ethanol / Distilleries

Total Product Overview

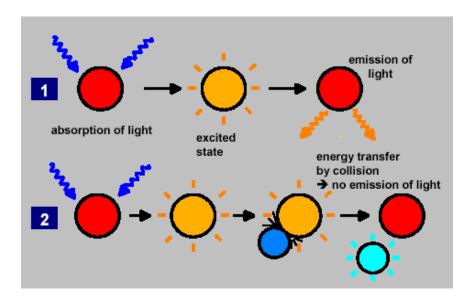

O₂ Measurement Principle

To determine the O_2 content, an O_2 sensor(sensor spot) is put in contact with the medium to be measured.

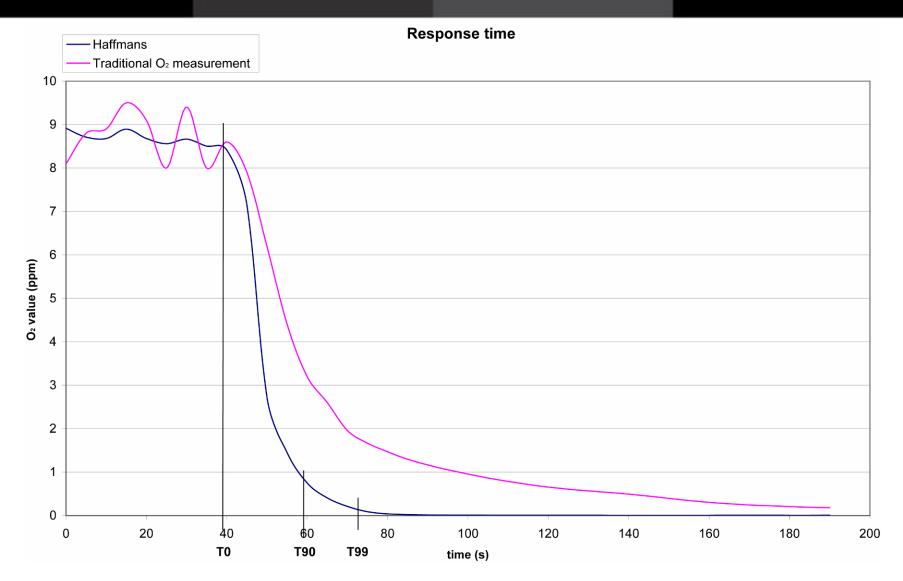
For a short time the sensor spot is intensely illuminated by a light source.

Depending on the O_2 content in the medium the sensor spot will give a light signal.

A photo detector measures this light signal and from the signal the O₂ content is calculated.



The sensor spot experiences wear with use and will need to be replaced. The frequency depends on the number of times that the O_2 content is measured by illuminating the sensor spot.


O₂ Measurement – How?

Optical O₂ Measurement Principle

- Optical O₂ sensor
- Based on the quenching of luminescence caused by collision between molecular oxygen and luminescent dye molecules in exited state
- The measurement is temperature compensated

Optical O₂ response time

O₂ Measurement – Why?

- Maintain quality during storage
- Shelf Life assured
- Guarantee content of nutritional components
- Prevent corrosion inside cans
- Enrich with O₂

Improved Sensory and Functional properties Savings on flavorings and ingredients

O₂ Measurement – Why?

- Maintain quality during storage
- Shelf Life assured
- Guarantee content of nutritional components
- Prevent corrosion inside cans
- Enrich with O₂

Improved Sensory and Functional properties Savings on flavorings and ingredients

O₂ Measurement – Where?

- Deaeration
- Storage
- Filtration
- Filling
- Finished product
- Wastewater treatment

What is TPO?

TPO = Total Package Oxygen

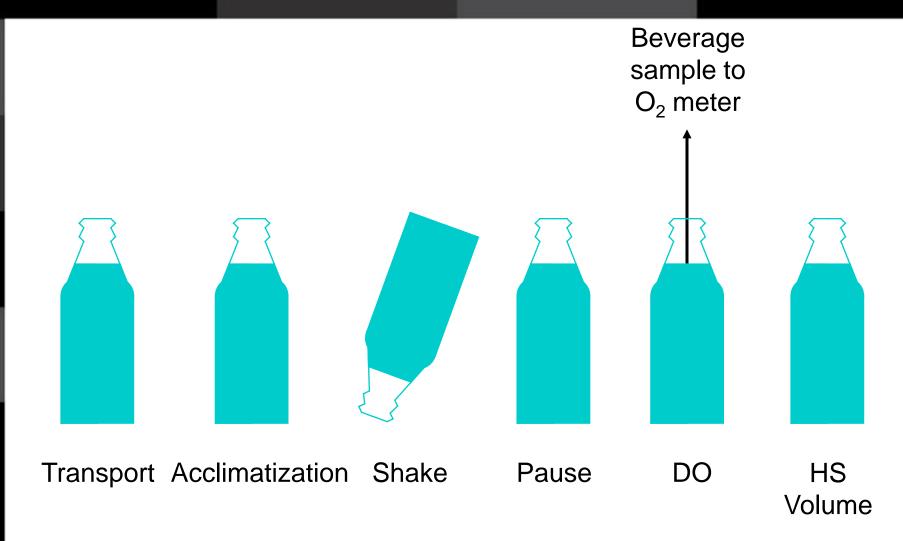
A measurement of all O₂ within a packaged container, including:

- O₂ in the headspace (HS) HSO and
- Dissolved Oxygen (DO)

Traditional method for measuring TPO

Preparations

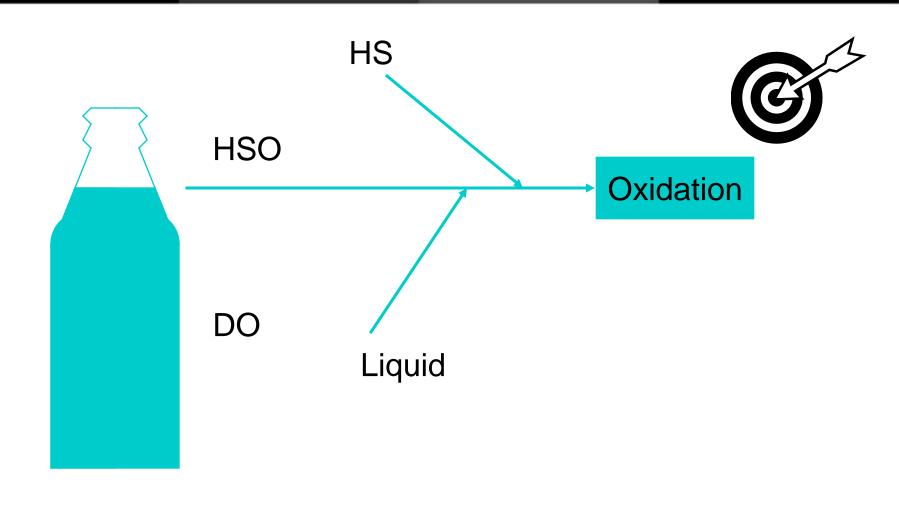
- Acclimatize the sample to 20 °C (68 °F)
- Shake for 5 minutes to equilibrium of all gasses
- 3-5 minutes pause time


DO measurement

Beverage sample is forwarded to DO Meter

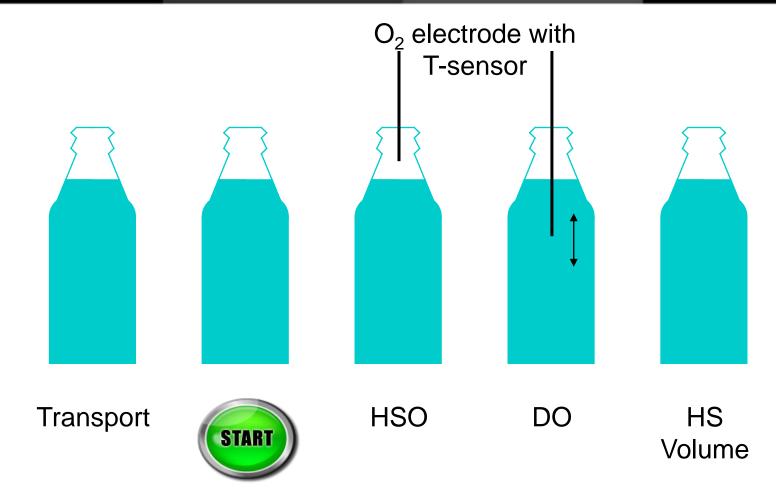
TPO calculation

DO x HS x Temperature factor (Z-factor method)

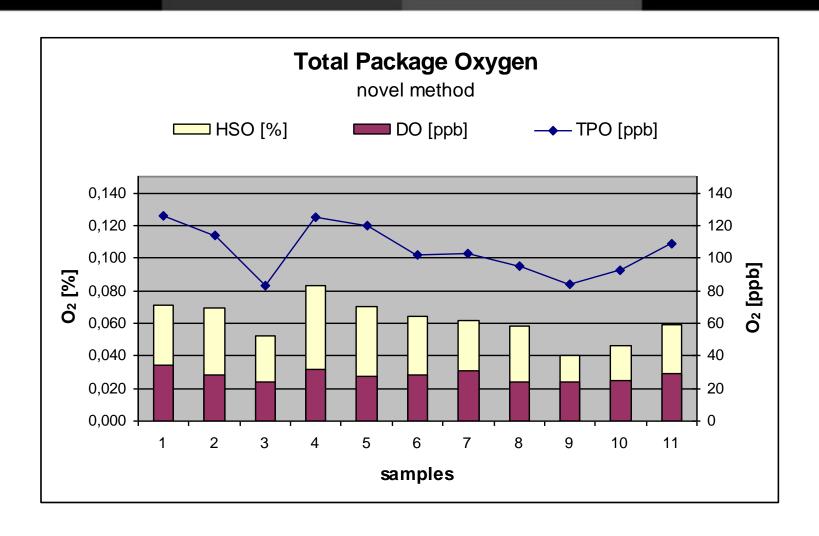

Traditional method for measuring TPO

Traditional method for measuring TPO

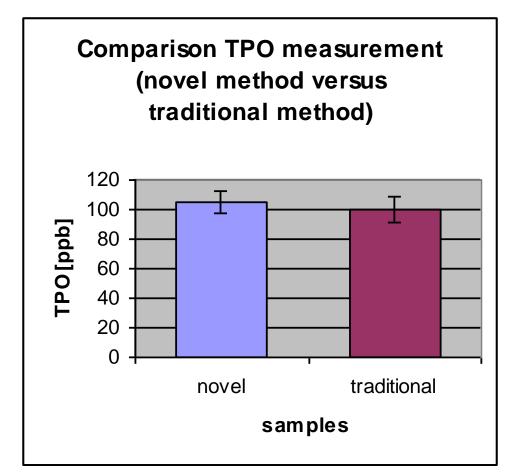
- Time: Sample preparation takes more than 10-15 minutes
- Sampling: Risk of O₂ contamination
- Origin of O₂: Not possible to discriminate the origin of O₂
 - HS or
 - DO
- Indirect method


Differentiated measurement

Novel method for measuring TPO


- No sample preparation required
- Sample remains in the package
 - less chance of O₂ contamination
 - able to measure beverages with pulp or fibers
- Origin of O₂: Differentiated measurement of
 - O₂ in HS and
 - DO
- Direct method

Novel method for measuring TPO



Product <u>remains</u> in the package

Novel method for measuring

Comparing traditional & novel methods

TPO measurements executed with Inpack TPO/CO₂ meter

Inpack TPO/CO₂ Meter, type c-TPO

- Differentiated measurement
 - DO
 - HSO
- Fully automated
- Operator independent
- No sample preparation required
- Beverage remains in package
- Optical O₂ Measurement
 - Reduced maintenance
 - Long stability
 - Quick response
 - No O₂ consumption

Portable **MEASUREMENT**

O₂ Gehaltmeter, o-DGM

Type o-DGM

O₂ GEHALTEMETER, RANGE OF USE

O₂ content of carbonated beverages

- in tanks
- in pipelines
- in kegs (pre-mix)
- on dispensing systems
- in bottle and cans (in combination with ISD)

O₂, TECHNICAL DATA O₂-MEASUREMENT

O₂ MEASUREMENT

Measuring Range : 0.0-2,000 ppb

Accuracy : 1 ppb +/- 2 % meas.

value

Detect. limit : 1 ppb

Response time (T99,9) : < 1 minute

Temperature range : -2 to 40 °C

O₂, USP O₂-MEASUREMENT

- Approved new optical O₂ meas. technology
- Excellent long term stability (no calibration required)
- High accuracy
- Quick response
- No electrolyte that needs to be replaced
- Small sensor size
- No O₂ consumption



In-line O₂ Measurement

O₂
In-line
Measurement

In-line O₂ Measurement

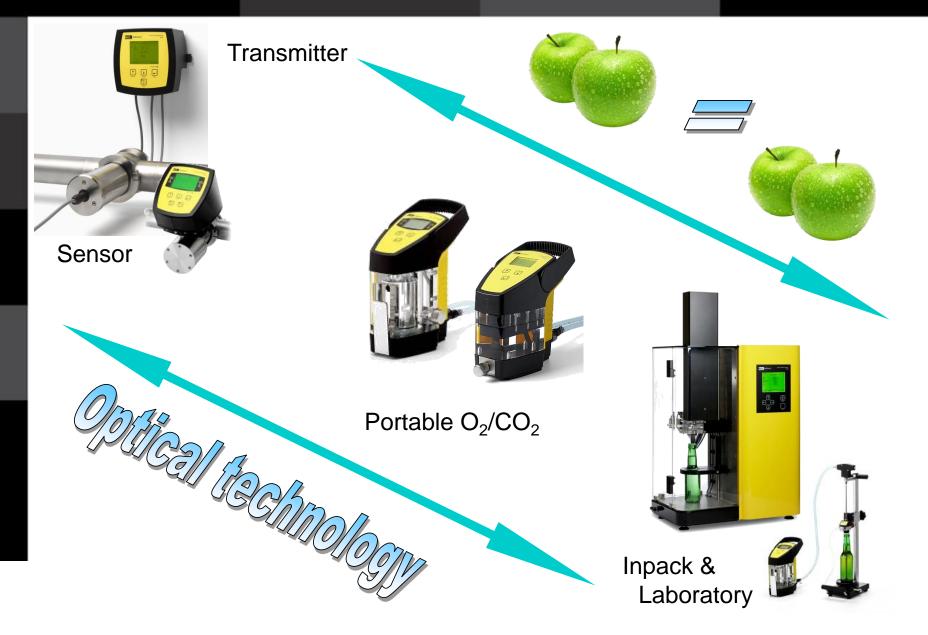
IN-LINE O₂ GEHALTEMETER

Transmitter

TYPE OGM

In-line O₂ Measurement

OGM, TECHNICAL DATA


 O_2 Range : 0 – 2,000 ppb

Accuracy O₂ Measurement : 1 ppb (+2% of measured value)

Measuring frequency : 10 s (adjustable from 2-999 s)

Process connection : Varivent

Optical O₂ Management Tools

Optical O₂ Management Tools

	Lab / package	At-line	In-line
O ₂			
Combined O ₂ /CO ₂			

Conclusion

- Results of novel and traditional methods are in agreement with a comparable standard deviation
- Added value by differentiated O₂ measurement
- Easy to pinpoint source of O₂ in a package
- Added confidence with knowing sources of O2
- Assurance of ensuring product quality/shelf life

Novel TPO Measurement

A sustainable solution keeps this party going!

