

Contents
Introduction .. 3

So what is hashing? ... 3

Credit Card Numbers .. 4

Measuring Success .. 5

Checksums in Data Communications .. 6

Checksums gone nuts ... 7

Checksum or Hash – Jargon Watch ... 8

What is a hash (and checksum) – A simple example .. 8

File Hashing ... 9

Password Hashing ... 9

MD5 Hash .. 10

SHA256 Hash ... 10

Attributes of a Useful Hash ... 11

Hash Pointer .. 13

Examples of cryptographic hash functions ... 14

Linked List ... 14

Linked List with Hash Pointers – The Foundation of Block Chain. .. 15

Merkle Trees ... 17

Consistency Verification .. 21

Data Synchronizaton ... 22

Making A Merkle Tree ... 22

Merkle Tree More Reading ... 23

Introduction
How do you compare two editions of the same book to see that they contain the same text.

Method 1 – word for word comparison

Method 2 – Feed both into a hashing algorithm. If the hashes are the same then the books are the same.

So what is hashing?
In simple terms, hashing means taking an input string of any length and giving out an output of a fixed

length. A hashing algorithm is a mathematical function that condenses data to a fixed size.

Credit Card Numbers
Credit card numbers are often typed in, input, transferred and quoted. All of this transmission can cause

errors, especially considering that humans are involved. Humans often make mistakes in transferal. To

try and minimize this, credit card numbers contain a check digit.

16 Digit Credit Card numbers actually contain a 15 digit number. The last digit, the 16th, is calculated

using the other 15 digits and a special formula.

The formula is specially designed to catch the common errors that are made by humans when they type

their number in. Like transposing – switching 2 digits around.

Measuring Success
On the table below you can see the Moduslus11 checksum detects 100% of ‘Single Error’, ‘Single

Transposition’ ….. In other words, Moddulus11 is truly excellent at its job

Checksums in Data

Communications

We don’t choose checksums, the protocols we use

do. But what if were designing a protocol from

scratch ?

CHIPKIN has reviewed the science for you.

Here are the main conclusions.

1. Ethernet, TCP and IP Checksums in almost

all cases make the protocol checksum

redundant.

2. If your data isn’t random you should take

care not to assume general purpose

checksums are applicable.

Example – you choose to use CRC as a

protocol checksum for messages relayed

over TCP/IP. This could be an error

because CRCs are particularly good at

detecting common errors caused

by noise in transmission channels. That

is your least likely source of error on an

ethernet packet so your choice of

checksum seems inappropriate.

Conclusions :

The error detection properties of checksums vary

greatly. The probability of undetected errors for a k-bit

checksum is not always 1=2k in realistic networks as is

sometimes thought. Rather, it is dependent on factors

such as the type of algorithm used, the length of the

code word, and the type of data contained in the

message. The typical determining factor of error

detection performance is the algorithm used, with

distinct differences evident for short messages typical

of embedded networks.

Conclusions :

Checksum and CRC algorithms have historically been

studied under the assumption that the data fed to the

algorithms was uniformly distributed. This is false.

What this work simply shows is that checksums are

even less effective error detection method than first

thought, because real data is not random, and in

particular, contains a lot of zeros.

 We also suggest that protocol designers consider

avoiding the practice of placing checksums in a

protocol header, but instead append them as a trailer

to the data being checksummed. …

https://en.wikipedia.org/wiki/Noise_(electronics)

Checksums gone nuts

Consider a DNP3 (the protocol use in the power generation and distribution business) packet. The

protocol designers went mad. ‘

Checksum or Hash – Jargon Watch

We call a hash that has been designed to detect data transmission errors and which are embedded in

the data – we name these checksums.

It also depends where you live. If you live in a world of block chain nerds you will be talking about

hash’s. If you live in a room of embedded communications people then you will be talking about

checksums. Checksums tend to be one or two bytes long. Most commonly used hash’s in 2017 are 16 or

32 bytes long).

What is a hash (and checksum) – A simple example

Say each letter of the alphabet has a number assigned to it.

A=1 , B=2 etc

Then

Adam = 1,4,1,13

With Hashing Rule = sum all the letters

hash = 1 + 4 + 1 + 13 = 19

With Hashing Rule = sum all the letters and take the last digit of the sum

1 + 4 + 1 + 13 = 19 , last digit = 9 therefore hash = 9

This hashing rule make the hash fixed length.

• A "hash" (also called a "digest", and informally a "checksum") is a kind of "signature" for a

stream of data that represents the contents.

• Hashes are "digests", not "encryption"

• Encryption transforms data from a cleartext to ciphertext and back (given the right keys)

• "Encryption" is a two-way operation. Hashing is not.

File Hashing

 The publisher provides the file to download and the MD5 hash of the file.

You download the file. You calc the MD5 hash. You compare it to the publishers. Now you know

you have the authentic file.

 Used to use MD5 but now that is considered cracked.

 Now often use PGP signatures.

Password Hashing

• It's a bad idea for computer systems to store passwords in cleartext (in their original

form)

• A more secure way is to store a hash of the password, rather than the password itself.

• Since these hashes are not reversible, there is no way to find out for sure "what

password produced this hash?" - and the so consequence of a compromise is much

lower.

• Also means employees cant steal passwords

• Salt = extra string added to make it a bit harder to reverse.

MD5 Hash
 Not considered safe anymore after collisions were found.

SHA256 Hash
The SHA (Secure Hash Algorithm) is one of a number of cryptographic hash functions. A

cryptographic hash is like a signature for a text or a data file. SHA-256algorithm generates an

almost-unique, fixed size 256-bit (32-byte) hash.

Hash is a one way function – it cannot be decrypted back.

NOTE: Tiny change in input produces a big change in the hash.

AND THEREFORE

From now on we assume that if the hash is different then the input data / text is

different.

1. If the hash is the same then the data is the same

2. The assumption is not true but its statistically effective.

As you can see, in the case of SHA-256, no matter how big or small your input is, the output will

always have a fixed 256-bits length. This becomes critical when you are dealing with a huge

amount of data and transactions.

So basically, instead of remembering the input data which could be huge, you can just

remember the hash and keep track. Before we go any further we need to first see the various

properties of hashing functions and how they get implemented in the blockchain.

Attributes of a Useful Hash

Attrribute #1 - Deterministic

This means that no matter how many times you parse through a particular input through a hash
function you will always get the same result. This is critical because if you get different hashes every
single time it will be impossible to keep track of the input.

Attrribute #2 - Quick Computation

https://en.wikipedia.org/wiki/SHA-2

The hash function should be capable of returning the hash of an input quickly. If the process isn’t fast
enough then the system simply won’t be efficient.

Attrribute #3 - Quick Computation

The hash function should be capable of returning the hash of an input quickly. If the process isn’t fast
enough then the system simply won’t be efficient.

Attrribute #4 - Small Changes In The Input Changes the Hash.

Even if you make a small change in your input, the changes that will be reflected in the hash will be hug

Input SHA-256 Hash

Test12345 106ac304ae39bc4029db0faf0d1734bd5a1dc2474331e8e17039365847536d7

test12345 6fec2a9601d5b3581c94f2150fc07fa3d6e45808079428354b868e412b76e6bb

Attrribute #5 - Collision Resistant

Given two different inputs A and B where H(A) and H(B) are their respective hashes, it is infeasible for
H(A) to be equal to H(B). What that means is that for the most part, each input will have its own unique
hash

It is much easier to break collision resistance than it is to break preimage resistance. No hash function is
collision free, but it usually takes so long to find a collision. So, if you are using a function like SHA-256, it
is safe to assume that if H(A) = H(B) then A = B.

Attrribute #6 - Puzzle Friendly

For every output “Y”, if k is hugely it is infeasible to find an input x such that

H(k concatenated with x) = Y.

Hash Pointer

The pointer in a block that points to the next block has two components

1. The hash of the previous block header

AND

2. The pointer to the previous block

Examples of cryptographic hash functions

There are hundreds of hashing algorithms out there and they all have specific purposes – some are
optimized for certain types of data, others are for speed, security, etc.

• MD 5: It produces a 128-bit hash. Collision resistance was broken after ~2^21 hashes.

• SHA 1: Produces a 160-bit hash. Collision resistance broke after ~2^61 hashes.

• SHA 256: Produces a 256-bit hash. This is currently being used by Bitcoin.

• Keccak-256: Produces a 256-bit hash and is currently used by Ethereum.

If you see “SHA-2,” “SHA-256” or “SHA-256 bit,” those names are referring to the same thing.

Linked List

Linked lists – Each object contains 2 elements – data and a pointer to the next item in the list.

Big advantage – Logical and physical order are now separate.

Linked List with Hash Pointers – The Foundation of Block Chain.

Data Block

Data

HASH of this Data and append the Hash to the data.

HASH of (Data 1)

Data 1

BUT This time before you calc the hash on your own data, you add the hash of the previous block to
your data

HASH of (Data 2)

Data 2

HASH of (Data 1)

The Hash from the previous
block is added to the data
before the has of Data 2 is

calculated.

NOW Block 3 knows when block 2 is changed because it knows what block 2 hash should be and it

can recalc the hash and compare them.

AND

Block 3 will also know if someone tried to change the order of the blocks or insert a new block

because the hash’s wont be the same.

HASH of (Data 2)

Data 2

HASH of (Data 1)

HASH of (Data 3)

Data 3

HASH of (Data 2)

HASH of (Data 4)

Data 4

HASH of (Data 3)

PROFOUND = Its easy to tell if anything changed. The data or the order of the blocks. If you can

detect change easily then its easier to trust the data.

JARGON WATCH

Block Chain Ledger = Think of the Hashed linked list . This is the ledger.

Hashing Hashes – Building Blocks of the
Blockchain ledger.

Merkle Trees

Merkle (a person) realized its easier working with hashes of hashes than with large original blocks of

data that keep growing longer. He defined the maths and methods to a specific method of hashing

hashes of blocks of data.

Each block contains thousands and thousands of transactions. It will be very time inefficient to store

all the data inside each block as a series. Doing so will make finding any particular transaction

extremely cumbersome and time-consuming. If you use a Merkle tree, however, you will greatly cut

down the time required to find out whether a particular transaction belongs in that block or not.

These notes assume that new data/changes are appended rather than edited in place in old data

blocks which have already been hashed.

We want to add some data to a file. (Add file 2 to File 2)

Using a hash tree like a Merkle tree:

1. Significantly reduces the amount of data that a trusted authority has to maintain to proof the

integrity of the data.

2. Significantly reduces the network I/O packet size to perform consistency and data verification as well

as data synchronization.

3. Separates the validation of the data from the data itself -- the Merkle tree can reside locally, or on a

trusted authority, or can itself reside on a distributed system (perhaps you only maintain your own

tree.) Decoupling the "I can prove the data is valid" from the data itself means you can implement

the appropriate and separate (including redundant) persistence for both the Merkle tree and the

data store.

So the answer to the why is three-fold:

1. Merkle trees provide a means of proving that integrity / validity of your data.

2. Merkle trees require little memory / disk space and proofs are computationally easy and fast.

3. Merkle tree proofs and management requires only a very small and terse amount of information to

be transmitted across a network.

Merkle trees (and variations) are used to provide:

• consistency verification

• data verification

• data synchronization

Consistency Verification

Merkel or Hash trees allow for easy consistency validation.

Instead of comparing the data, you compare the tree of hashes. This is fast and easy. It does NOT prove

the data is the same but it proves the hash trees are consistent.

A "consistency proof" lets you verify that any two versions of a Hash Tree are consistent:

1. the later version includes everything in the earlier version

2. ...in the same order

3. ...and all new records come after the records in the older version

"If you can prove that a Hash Tree is consistent it means that:

• no certificates [records] have been back-dated and inserted into the Hash Tree

• no certificates have been modified in the Hash Tree,

• and the Hash Tree has never been branched or forked.

It is time consuming and computationally expensive to check the entirety of each file
whenever a system wants to verify data. So, this why Merkle trees are used. Basically, we
want to limit the amount of data being sent over a network (like the Internet) as much as
possible. So, instead of sending an entire file over the network, we just send a hash of the
file to see if it matches. The protocol goes like this:

1. Computer A sends a hash of the file to computer B.

2. Computer B checks that hash against the root of the Merkle tree.

3. If there is no difference, we're done! Otherwise, go to step 4.

4. If there is a difference in a single hash, computer B will request the roots of the two

subtrees of that hash.

5. Computer A creates the necessary hashes and sends them back to computer B.

6. Repeat steps 4 and 5 until you've found the data blocks(s) that are inconsistent. It's

possible to find more than one data block that is wrong because there might be more

than one error in the data.

Data Synchronizaton

Merkle trees are useful in synchronizing data across a distributed data store because it allows each

node in the distributed system to quickly and efficiently identify records that have changed without

having to send all the data to make the comparison.

Making A Merkle Tree

They are binary.

Take any 2 records and calculate the hash of each.

Allocate a parant node to the two records (leaves)

In that node store the hash of the two child hashes.

Repeat until every 2 records (it’s a binary process) has a parant

Repeat until each 2xparants have a parant

Repeat until you have reached the top of the pyramid. This is called the Root Node.

Merkle Tree More Reading
https://brilliant.org/wiki/merkle-tree/

https://brilliant.org/wiki/merkle-tree/

