Gateway for the integration of BACnet MSTP and BACnet IP installations into KNX TP-1 home automation systems.

Order code:

IBKNXBAC1000000, 100 points version
IBKNXBAC2500000, 250 points version
IBKNXBAC6000000, 600 points version
IBKNXBAC1K20000, 1200 points version
IBKNXBAC3K00000, 3000 points version
INDEX

Description .. 5
1.1 Introduction .. 5
1.2 Functionality .. 6
1.3 Gateway’s capacity ... 6
2 BACnet interface ... 7
2.1 Description ... 7
2.2 BACnet/IP ... 8
2.3 BACnet MSTP ... 8
2.4 Points definition ... 9
3 KNX System .. 9
3.1 Description .. 9
3.2 Points definition ... 10
4 Connections .. 11
4.1 Powering the device ... 12
4.2 Connection to KNX ... 12
4.3 Connection to BACnet .. 12
 4.3.1 BACnet IP .. 12
 4.3.2 BACnet MSTP ... 12
4.4 Connection to the configuration tool .. 13
5 Set-up process and troubleshooting ... 14
5.1 Pre-requisites .. 14
5.2 IntesisBox MAPS. Configuration & monitoring tool for IntesisBox BACnet series 14
 5.2.1 Introduction ... 14
 5.2.2 Connection ... 14
 5.2.3 Configuration tab .. 15
 5.2.4 Signals ... 21
 5.2.5 Sending the configuration to IntesisBox .. 22
 5.2.6 Diagnostic ... 22
5.3 Set-up procedure .. 24
6 Electrical & Mechanical Features .. 25
7 Dimensions ... 26
Description

1.1 Introduction

This document describes the integration of BACnet MSTP and BACnet IP installations into KNX TP-1 home automation systems using the IntesisBox KNX – BACnet Client gateway.

The aim of this integration is to make accessible BACnet system signals and resources from a KNX home automation system, as if it was a part of the own KNX installation and vice-versa.

From BACnet point of view, IntesisBox acts as a BACnet client device, able to subscribe (COV), or perform periodic polling and writes on configured BACnet objects. BACnet points’ values are available through its KNX interface, acting in the KNX system as one more KNX device in it.

Configuration is carried out using the configuration software IntesisBox® MAPS.

This document assumes that the user is familiar with KNX and BACnet technologies and their technical terms.

Integration of BACnet IP or BACnet MSTP server systems into KNX home automation systems
1.2 Functionality

From the BACnet system point of view, after the start up process, IntesisBox subscribes to configured BACnet points or reads them continuously from their respective BACnet server devices and updates in its memory the value of the present_value property received from them.

Every one of the present_values is associated to a KNX group object, associated in turn to one or more KNX Group Addresses. When change occurs in the KNX object, it will be transmitted to KNX TP-1 with its corresponding Group Address.

Likewise, when change is received in a write-enabled KNX Group Object, change will be written to present_value property of corresponding BACnet object associated with it (using WriteProperty BACnet service).

Therefore, IBOX-KNX-BAC performs as a single KNX device in the KNX TP-1 network offering communication objects to access the BACnet objects of the configured external BACnet devices.

In the continuous polling of the BACnet server, if an unresponsive BACnet server device is detected, the corresponding virtual signal inside IntesisBox will be activated indicating communication error with the BACnet server device. These virtual signals indicating communication status in real time with the BACnet devices are also accessible from KNX as a KNX Group Object, like the rest of the points of the gateway.

1.3 Gateway’s capacity

IntesisBox capacity is listed below:

<table>
<thead>
<tr>
<th>Element</th>
<th>100 version</th>
<th>250 version</th>
<th>600 version</th>
<th>1200 version</th>
<th>3000 version</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of KNX devices</td>
<td>KNX TP-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Communication over KNX TP-1 line (9600 bps)</td>
</tr>
<tr>
<td>Number of Communication Objects</td>
<td>100</td>
<td>250</td>
<td>600</td>
<td>1200</td>
<td>3000</td>
<td>Maximum number of Communication Objects that can be defined.</td>
</tr>
<tr>
<td>Number of Main Group Addresses</td>
<td>100</td>
<td>250</td>
<td>600</td>
<td>1200</td>
<td>3000</td>
<td>Maximum number of KNX Main Group Addresses to be used</td>
</tr>
<tr>
<td>Number of Associations</td>
<td>200</td>
<td>500</td>
<td>1200</td>
<td>2400</td>
<td>6000</td>
<td>Maximum number of KNX Association</td>
</tr>
<tr>
<td>Type of BACnet devices</td>
<td>IP / MSTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Communication with BACnet IP and MSTP</td>
</tr>
<tr>
<td>Number of BACnet devices</td>
<td>256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum number of different BACnet devices the IntesisBox can communicate to</td>
</tr>
</tbody>
</table>
2 BACnet interface

This section describes the BACnet part of the IntesisBox's configuration and functionality.

2.1 Description

BACnet server devices are represented in the form of Devices holding Objects, normally every physical device corresponds to a logical one. The Objects can be of different type depending on the data and functionality they represent: Analog Input, Analog output, Digital Input, etc. Up to 23 different types of objects. Note that Outputs are objects meant to be written in the direction BACnet network to the device, and the opposite for Inputs (they are meant to offer status information of the BACnet device). Value objects are bidirectional.

Every Object has different properties. The most meaningful one, and the one used to read and write values by IntesisBox is the Present Value property, which indicates the real value of the object. Every Object of the same type in a Device is identified with its associated Object Instance.

These are the possible BACnet objects supported by IntesisBox:

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Input</td>
<td>Present Value</td>
<td>Analog signal. i.e. Ambient temperature.</td>
</tr>
<tr>
<td>Analog Output</td>
<td>Present Value</td>
<td>Analog signal.</td>
</tr>
<tr>
<td>Analog Value</td>
<td>Present Value</td>
<td>Analog signal. i.e. Temperature set point value.</td>
</tr>
<tr>
<td>Binary Input</td>
<td>Present Value</td>
<td>Digital signal. i.e. ON/OFF status.</td>
</tr>
<tr>
<td>Binary Output</td>
<td>Present Value</td>
<td>Digital signal. i.e. ON/OFF command.</td>
</tr>
<tr>
<td>Binary Value</td>
<td>Present Value</td>
<td>Digital signal. i.e. ON/OFF status/command.</td>
</tr>
<tr>
<td>Multistate Input</td>
<td>Present Value</td>
<td>Multistate signal. i.e. Working mode status.</td>
</tr>
<tr>
<td>Multistate Output</td>
<td>Present Value</td>
<td>Multistate signal.</td>
</tr>
<tr>
<td>Multistate Value</td>
<td>Present Value</td>
<td>Multistate signal. i.e. Working mode command.</td>
</tr>
<tr>
<td>Accumulator</td>
<td>Present Value</td>
<td></td>
</tr>
<tr>
<td>Loop</td>
<td>Present Value</td>
<td></td>
</tr>
</tbody>
</table>

Every signal is identified with its associated Device + Object Type + Object Instance.

IntesisBox simulates a virtual BACnet device inside the BACnet network acting as client device in the BACnet system. The communication with the rest of the BACnet devices is done via the Ethernet or MSTP (RS485) port of the gateway which implements the BACnet protocol.

IntesisBox implements a single BACnet object of its own: this is, its BACnet Device Object, containing its BACnet Device Identifier and basic properties of IntesisBox as BACnet device (name, firmware version, etc).

Using the configuration tool with IntesisBox it’s possible to scan the BACnet network for available devices and their objects, which can later be directly added to your configuration. This facilitates the configuration process, avoiding to enter them manually.

BACnet/IP and BACnet MSTP physical layers are supported. Only one physical layer can be used at a time. This is, if communicating to BACnet using BACnet/IP, BACnet MSTP cannot be used, and viceversa.
2.2 BACnet/IP

Main parameter to set up for BACnet/IP, additional to basic IP settings (IP, netmask, default gateway) is the communication port. IntesisBox uses port 47808 (0xBAC0) by default and it can be changed at configuration time.

When using BACnet/IP, device can also act as a Foreign Device (in order to be able to communicate with devices that are in another network domain) and alternatively implement a BBMD itself (Bacnet/IP Broadcast Management Device). This functionality facilitates communication of devices in other networks with the devices in the network where IntesisBox is installed.

Communication with BACnet/IP excludes possibility of communicating with BACnet MSTP from IntesisBox.

2.3 BACnet MSTP

When choosing BACnet MSTP device needs to be associated with a MAC address (address within the MSTP network segment), to be configured with configuration software.

Following baud rates are supported for MSTP line: 9600, 19200, 38400, 76800, 115200 or Autobauding (autodetect).

Standard wiring guidelines for EIA485 apply for the BACnet MSTP line.

Communication with BACnet MSTP excludes possibility of communicating with BACnet/IP from IntesisBox.
2.4 Points definition

Every point defined in IntesisBox has the following BACnet features associated to it:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet Device</td>
<td>BACnet device to which belongs the point, from a list of BACnet devices that can be defined in IntesisBox (up to 256). For every BACnet device defined, a virtual signal is created automatically in IntesisBox to inform about the communication with the BACnet device, this signal is available also from the KNX interface like the rest of points.</td>
</tr>
<tr>
<td>BACnet object type</td>
<td>BACnet object type for the point. It can be one of the following BACnet object types supported by IntesisBox: AI = Analog Input. AO = Analog Output. AV = Analog Value. DI = Digital Input. DO = Digital Output. DV = Digital Value. MI = Multistate Input. MO = Multistate Output. MV = Multistate Value. LOOP = Loop ACUM = Accumulator Consult documentation of BACnet device(s) to integrate for information about BACnet object types of the points desired to integrate.</td>
</tr>
<tr>
<td>BACnet object instance</td>
<td>BACnet object instance for the point on the external BACnet device. Consult documentation of BACnet device(s) to integrate for information about BACnet object instance of the points desired to integrate.</td>
</tr>
</tbody>
</table>

Note that configuration tool used with IntesisBox enables for discovery of existing BACnet devices in the network, as well as their BACnet objects and types, which can be later directly added in configuration. This facilitates the process of choosing suitable parameters above for every BACnet object on every BACnet device to integrate.

3 KNX System

In this section, a common description for all IntesisBox KNX series gateways is given, from the point of view of KNX system which is called from now on *internal system* The BACnet system is also called from now on *external system*.

3.1 Description

IntesisBox KNX connects directly to the KNX TP-1 (EIB) bus and behaves as one more device into the KNX system, with the same configuration and operational characteristics as other KNX devices.

Internally, the circuit part connected to the KNX bus is opto-isolated from the rest of the electronics.

IntesisBox-KNX receives, manages and sends all the telegrams related to its configuration to the KNX bus.

On receiving telegrams of KNX Groups associated to internal datapoints, the corresponding messages are sent to the external system (BACnet) to maintain both systems synchronised in every moment.
When a change in a signal of the external system is detected, a telegram is sent to the KNX bus (of the associated KNX group) to maintain both systems synchronised in every moment.

The status of the KNX bus is checked continuously and, if a bus drops down is detected, due to a failure in the bus power supply for example, when the KNX bus is restored again, IntesisBox will retransmit the status of all the KNX groups marked as “T” Transmit. Also Updates for the groups marked as “U” will be performed on corresponding Group Address. The behaviour of each individual point into IntesisBox is determined by the flags configured for the point. See details in section below.

3.2 Points definition

Every internal datapoint to define has the following KNX properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Descriptive information about the Communication Object or Signal.</td>
</tr>
<tr>
<td>Signal</td>
<td>Signal's Description. Only for informative purposes, allows identifying the signal comfortably.</td>
</tr>
<tr>
<td>DPT</td>
<td>It is the KNX data type used to code the signal's value. It will depend on the type of signal associated in the external system in every case. In some integrations, it is selectable, in others it is fixed due to the intrinsic characteristics of the signal.</td>
</tr>
<tr>
<td>Group</td>
<td>It is the KNX group to which the point is associated. It is also the group to which the read (R), write (W), transmit (T) and update (U) flags are applied. Is the sending group.</td>
</tr>
<tr>
<td>Listening addresses</td>
<td>They are the addresses that will actuate on the point, apart of the main Group address.</td>
</tr>
<tr>
<td>R</td>
<td>Read. If this flag is activated, read telegrams of this group address will be accepted.</td>
</tr>
<tr>
<td>RI</td>
<td>Read. If this flag is activated, the object will be read on initialization.</td>
</tr>
<tr>
<td>W</td>
<td>Write. If this flag is activated, write telegrams of this group address will be accepted.</td>
</tr>
<tr>
<td>T</td>
<td>Transmit. If this flag is activated, when the point's value changes, due to a change in the external system, a write telegram of the group address will be sent to the KNX bus.</td>
</tr>
<tr>
<td>U</td>
<td>Update. If this flag is activated, on IntesisBox start-up or after a KNX bus reset detection, objects will be updated from KNX.</td>
</tr>
<tr>
<td>Active</td>
<td>If activated, the point will be active in IntesisBox, if not, the behaviour will be as if the point is not defined. This allows deactivating points without the need of delete them for possible future use.</td>
</tr>
</tbody>
</table>

These properties are common for all IntesisBox KNX series gateways. Although each integration may have specific properties according to the type of signals of the external system.
4 Connections

Find below information regarding the IntesisBox connections available.

Power Supply
Must use NEC Class 2 or Limited Power Source (LPS) and SELV rated power supply.

If using DC power supply:
Respect polarity applied of terminals (+) and (-). Be sure the voltage applied is within the range admitted (check table below). The power supply can be connected to earth but only through the negative terminal, never through the positive terminal.

If using AC power supply:
Make sure the voltage applied is of the value admitted (24 Vac). Do not connect any of the terminals of the AC power supply to earth, and make sure the same power supply is not supplying any other device.

Ethernet / BACnet IP
Connect the cable coming from the IP network to the connector ETH of the gateway. Use an Ethernet CAT5 cable. If communicating through the LAN of the building, contact the network administrator and make sure traffic on the port used is allowed through all the LAN path (check the gateway user manual for more information). Default IP is 192.168.100.246. DHCP is enabled by default.

PortA / KNX
Connect the KNX TP1 bus to connectors A3 (+) and A4 (-) of gateway’s PortA. Respect the polarity.

PortB / BACnet MSTP
Connect the EIA485 bus to connectors B1 (B+), B2 (A-) and B3 (SNGD) of gateway’s PortB. Respect the polarity.

Note for PortB: Remember the characteristics of the standard EIA485 bus: maximum distance of 1200 meters, maximum 32 devices connected to the bus, and in each end of the bus it must be a termination resistor of 120 Ω. The port includes a DIP-Switch for configuration of biasing circuit as well as termination:

- **SW1:**
 - **ON:** 120 Ω termination active
 - **OFF:** 120 Ω termination inactive (default)
- **SW2-3:**
 - **ON:** Polarization active (default)
 - **OFF:** Polarization inactive

If the gateway is installed in one bus end make sure that termination is active.

Console Port
Connect a mini-type B USB cable from your computer to the gateway to allow communication between the Configuration Software and the gateway. Remember that Ethernet connection is also allowed. Check the user manual for more information.

USB
Connect a USB storage device (not a HDD) if required. Check the user manual for more information.

Ensure proper space for all connectors when mounted (see section 7).
4.1 **Powering the device**

A power supply working with any of the voltage range allowed is needed (check section 6). Once connected the RUN led (Figure above) will turn on.

WARNING! In order to avoid earth loops that can damage the gateway and/or any other equipment connected to it, we strongly recommend:

- The use of DC power supplies, floating or with the negative terminal connected to earth. **Never use a DC power supply with the positive terminal connected to earth.**
- The use of AC power supplies only if they are floating and not powering any other device.

4.2 **Connection to KNX**

Connect the communication cable coming from the KNX network hub or switch to the ETH port (Figure above) of IntesisBox.

In case there is no response from the KNX installation or KNX devices to the frames sent by IntesisBox, check that they are operative and reachable from the network connection used by IntesisBox.

Check as well if there is a line coupler that it is not filtering the telegrams from/to the IntesisBox.

4.3 **Connection to BACnet**

4.3.1 BACnet IP

Connect the communication cable coming from the network hub or switch to the ETH port (Figure above) of IntesisBox. The cable to be used shall be a straight Ethernet UTP/FTP CAT5 cable.

In case there is no response from the BACnet devices to the frames sent by IntesisBox, check that they are operative and reachable from the network connection used by IntesisBox. Check the IntesisBox Ethernet interface sending Pings to its IP address using a PC connected to the same Ethernet network.

Check as well with the network admin that there are no limitations regarding UDP communication or ports blocked.

4.3.2 BACnet MSTP

Connect the EIA485 bus to connectors B1 (B+), B2 (A-) and B3 (SNGD) of gateway’s PortB. Respect the polarity.

Remember the characteristics of the standard EIA485 bus: maximum distance of 1200 meters, maximum 32 devices connected to the bus, and in each end of the bus it must be a termination resistor of 120 Ω. Set port switch SW1 to ON if gateway is installed on one bus end. SW2-3 will generally go to ON (polarization active), unless there is another client / header device providing polarization in the same bus.
4.4 Connection to the configuration tool

This action allows the user to have access to configuration and monitoring of the device (more information can be found in the configuration tool User Manual). Two methods to connect to the PC can be used:

- **Ethernet**: Using the Ethernet port of IntesisBox.
- **USB**: Using the console port of IntesisBox, connect a USB cable from the console port to the PC.
5 Set-up process and troubleshooting

5.1 Pre-requisites

It is necessary to have a KNX installation, device or interface operative and well connected to the corresponding KNX port of IntesisBox and a BACnet MSTP or BACnet IP installation connected to their corresponding ports as well.

Connectors, connection cables, PC to use the configuration tool and other auxiliary material, if needed, are not supplied by Intesis Software SLU for this standard integration.

Items supplied by Intesis Software for this integration are:

- IntesisBox gateway.
- Mini-USB cable to connect to PC
- Link to download the configuration tool.
- Product documentation.

5.2 IntesisBox MAPS. Configuration & monitoring tool for IntesisBox BACnet series

5.2.1 Introduction

IntesisBox MAPS is a Windows® compatible software developed specifically to monitor and configure IntesisBox KNX series.

The installation procedure and main functions are explained in the IntesisBox MAPS User Manual for KNX. This document can be downloaded from the link indicated in the installation sheet supplied with the IntesisBox device or in the product website at www.intesisbox.com

In this section, only the specific case of BACnet to KNX systems will be covered.

Please check the IntesisBox MAPS user manual for specific information about the different parameters and how to configure them.

5.2.2 Connection

To configure the IntesisBox connection parameters press on the Connection button in the menu bar.
5.2.3 Configuration tab

Select the **Configuration** tab to configure the connection parameters. Three subsets of information are shown in this window: General (Gateway general parameters), KNX (KNX TP-1 interface configuration) and BACnet Client (BACnet interface parameters).

![Figure 5.2 IntesisBox MAPS configuration tab](image)

General and *KNX* tabs are explained in IntesisBox MAPS user manual for IntesisBox KNX Series.

5.2.3.1 BACnet Client Configuration

Set the parameters for connection to BACnet network / BACnet server devices in the network.

![Figure 5.3 IntesisBox MAPS configuration tab for BACnet Client](image)
Configuration for BACnet client has three sections: General Configuration, Devices Configuration and Gateway Mode.

- General Configuration

 In this section, following parameters should be configured:

 1. **Device Name.** Name of the device in the bacnet network (‘object name’ property of device object)
 2. **Device Instance.** Instance number of the device in the bacnet network (instance number property of device object)
 3. **Password.** BACnet password of the device to execute service ‘Device Management – Restart’, sent by other device in the BACnet network.
 4. **Sequential comms.** Enables sequential communication with other BACnet server devices. This is, no new request will be initiated from IntesisBox until response to last request has been received. This becomes necessary in case of communication with BACnet MSTP devices behind a BACnet IP to MSTP router, as no concurrent transactions are possible in MSTP.

- Gateway Mode

 In this section, following parameters should be configured:

 1. **Mode.** Select whether IntesisBox is going to connect with BACnet IP or BACnet MSTP. Rest of parameters in the section will be different depending on this.
 2. **(Mode IP) UDP Port.** UDP port that will be used for BACnet IP communication. It defaults to 47808 (0xBAC0)
 3. **(Mode IP) Network Role.** Related to capability of the device of communicating with devices from other networks. Disabled, Foreign Device or BBMD are the possible choices. In case of Foreign Device, IP of the BBMD where it will connect needs to be entered, as well as TTL (time-to-live). In case of selecting BBMD, table of BBMD’s in the BACnet network needs to be entered.
 4. **(Mode MSTP) Max Masters.** Highest MAC address of BACnet MSTP master device in the MSTP line.
 5. **(Mode MSTP) Max Info Frames.** Max number of frames that the device can send out to the network when it receives token in the MSTP line.
 6. **(Mode MSTP) Baudrate.** Baudrate of the BACnet MSTP link.
 7. **(Mode MSTP) MAC Address.** MAC address of IntesisBox as BACnet MSTP device in the MSTP line.

- Devices Configuration

 In this section, a single entry for which BACnet server device the IntesisBox is to communicate with needs to be entered.

 In Signals table, each signal will need to be associated with the device it will be read to/written from.
Devices can be added in three ways:

- **Manually**: With checkbox ‘Use template’ disabled, Add button should be clicked. Number of devices to add can be adjusted in the text field next to button Add.

- **From template**: Same as manual but based on a template file. This will add in Signals table all the signals specified in the template file for the device to be integrated.

- **From scan**: Gives functionality to scan the BACnet network for existing BACnet server devices and their objects, enabling to add them in the config. See section ‘BACnet scan functionality’ below for further detail.

Once a device is added, following fields must be filled in for each device:

1. **Device Name**: Device identifier within MAPS. It will be used to reference the device from the signals table.

2. **Recipient Type**: Way in which the device will be identified within the BACnet network. Options are Device (instance), Address, Address (MSTP). Depending on which option is chosen different parameters will appear to enter the details of the address.

3. **(Recipient type: Device) Object Instance**: Instance number of device object for the BACnet server device.

4. **(Recipient type: Address) Network**: Destination network, 0..65535. 0 for local network, 65535 for broadcast (all networks).

5. **(Recipient type: Address) IP / Port**: IP and Port of the BACnet server device.
6. **(Recipient type: Address (MAC)) Network**: Destination network, 0..65535. 0 for local network, 65535 for broadcast (all networks).

7. **(Recipient type: Address (MAC)) MSTP MAC Address**: MAC address 0..255 of the BACnet server device.

8. **Reading type**: Related to service that will be used to read the BACnet server device. Options are Polling (ReadProperty), COV, COV-unconf (unconfirmed COV), Polling Multiple (ReadPropertyMultiple).

9. **Write priority**: Priority with which writes will be performed. Default is (none) (no priority), can be chosen from 1 (highest) to 16 (lowest) and none.

10. **COV Lifetime**: Periodic timeout at which COV subscription will be renewed.

- BACnet scan functionality

Devices Configuration section includes functionality to scan the BACnet network for existing BACnet servers and their objects.

To access this Scan functionality window, make sure that you’re online/connected with the device and click on **Scan** button.

![Figure 5.6 BACnet Network scan button](image)

If properly connected to the IntesisBox, following dialog will appear:

![Figure 5.7 BACnet Network scan dialog](image)
In top section of the window **BACnet Explorer Configuration**, following parameters are available:

- **Explore Mode**: It can be either IP or MSTP, depending on last configuration downloaded to IntesisBox.

 NOTE: Bacnet Explorer function will use or BACnet exploration actual parameters for BACnet configured in IntesisBox. This is, values for Link layer (IP or MSTP), Device Object Instance, MAC & baud rate or IP address, etc. Therefore, it might be necessary to download a basic BACnet configuration parameters to the IntesisBox before proceeding with the scan of the BACnet network.

- **Advanced Configuration**: In this section the way the scan is performed is configured. Following parameters can be setup:

 1. **Start and End Instance**: Search will be based on Device object instance number of present devices in the network. Search can be done on all possible Instances (0 to 4194302) or narrowed down (until even a single device) if the Device instance is known a priori, or within a certain range. Narrowing the value between start and end instance will speed up the search for BACnet devices.

 2. **Step**: Number of BACnet devices queried at once.

 3. **Scan timeout**: Timeout that will wait for answer after request from a BACnet device.

 4. **Discover MSTP slaves** (only when Explore Mode is MSTP): Will enable scan of MSTP slave nodes (by default, only MSTP master nodes will be discovered). If enabled, **Start MAC**, **End MAC** and **Timeout** (in ms) for the scan can be adjusted.

 5. **MSTP Slaves through IP** (only when Explore Mode is IP): In case that BACnet IP to MSTP routers are present in the BACnet/IP network, will enable scan of MSTP slaves through the corresponding BACnet/IP router (note that MSTP master nodes under a BACnet/IP router will always be scanned). If enabled, **Net Number**, **Start MAC**, **End MAC** and **Timeout** (in ms) for the scan can be adjusted.

- **Start BACnet Explorer**: Exploration of the bacnet network will start once the window **BACnet Explorer** itself is open. You can Stop and restart it (button **Stop** becomes **Start**), in order to stop scanning traffic in the BACnet network. BACnet devices found in the network will appear in **Explorer Results** section as they respond.

Figure 5.8 BACnet Explorer sample results on scan dialog
By clicking each of the devices, its Device Name, Instance, Network Number and Vendor Id will be given in the center of the dialog.

Once list of devices is shown, next step is obtaining their list of objects. This can be done in two ways:

- Selecting a particular device and clicking at **Discover** button
- Checking all devices whose objects are to be scanned and clicking at **Discover Checked Devices** button. This must be used with care when many devices are checked at once. Resulting scan time can become very large.

Either way, when having discovered objects under a BACnet device, they are shown in the list at the right part of the window:

![Figure 5.9 BACnet Explorer showing objects found under a BACnet device](image)

After objects have been discovered, it must be selected both the BACnet devices to be integrated, as well as the signals of each that are desired in the project.

![Figure 5.10 BACnet Explorer with a selection of objects and devices to integrate](image)

In the example above, if Apply button is pressed, two devices will be integrated:
• Device SM-ACN-BAC (200)
• Device IBOX-BAC-DALI (246)

The BACnet objects that will be integrated in configuration are O01U00_Setpoint_S and O01U00_Room_Temperature for Device SM-ACN-BAC, and those selected for Device IBOX-BAC-DALI (can be seen when device is selected in the list at the left part of the window).

Next step is to transfer those objects to MAPS configuration. To do so, it must be first selected if those selected objects are meant to replace the entire configuration (Replace Devices – default) or added to existing signals configuration (Add Devices).

Apply button and selection on whether Replace or Add Devices

Apply button must be pressed then to transfer the results to the signals tab of the configuration.

5.2.4 Signals

All available objects, Object Instances, its corresponding KNX objects and other main parameters are listed in the signals tab. More information on each parameter and how to configure it can be found in the IntesisBox MAPS user manual for KNX.
5.2.5 Sending the configuration to IntesisBox

When the configuration is finished, follow the next steps.

1.- Save the project (Menu option **Project->Save**) on your hard disk (more information in IntesisBox MAPS User Manual).

2.- Go to tab ‘Receive / Send’ of MAPS, and in **Send** section, press **Send** button. IntesisBox will reboot automatically once the new configuration is loaded.

![IntesisBox MAPS Receive/Send tab](image)

Figure 5.13 IntesisBox MAPS Receive/Send tab

After any configuration change, do not forget to send the configuration file to the IntesisBox using the Send button in the Receive / Send section.

5.2.6 Diagnostic

To help integrators in the commissioning tasks and troubleshooting, the Configuration Tool offers some specific tools and viewers.

In order to start using the diagnostic tools, connection with the Gateway is required.

The Diagnostic section is composed by two main parts: Tools and Viewers.

- **Tools**
 Use the tools section to check the current hardware status of the box, log communications into compressed files to be sent to the support, change the Diagnostic panels’ view or send commands to the gateway.

- **Viewers**
 In order to check the current status, viewer for the Internal and External protocols are available. It is also available a generic Console viewer for general information about communications and the gateway status and finally a Signals Viewer to simulate the BMS behavior or to check the current values in the system.
More information about the Diagnostic section can be found in the Configuration Tool manual.
5.3 Set-up procedure

1. Install IntesisBox MAPS on your laptop, use the setup program supplied for this and follow the instructions given by the Installation wizard.

2. Install IntesisBox in the desired installation site. Installation can be on DIN rail or on a stable not vibrating surface (DIN rail mounted inside a metallic industrial cabinet connected to ground is recommended).

3. Connect the KNX communication cable coming from the KNX network to the port marked as Port A on IntesisBox (More details in section 4).

4. If using BACnet IP, connect the communication cable coming from the BACnet IP network to the port marked as Ethernet on IntesisBox (More details in section 4).

 If using BACnet MSTP, connect the communication cables coming from the BACnet MSTP network to the port marked as Port B on IntesisBox (More details in section 4).

5. Power up IntesisBox. The supply voltage can be 9 to 30 Vdc or just 24 Vac. Take care of the polarity of the supply voltage applied.

 WARNING! In order to avoid earth loops that can damage IntesisBox and/or any other equipment connected to it, we strongly recommend:

 - The use of DC power supplies, floating or with the negative terminal connected to earth. **Never use a DC power supply with the positive terminal connected to earth.**
 - The use of AC power supplies only if they are floating and not powering any other device.

6. If you want to connect using IP, connect the Ethernet cable from the laptop PC to the port marked as USB of IntesisBox (More details in section 4).

 If you want to connect using IP, connect the Ethernet cable from the laptop PC to the port marked as USB of IntesisBox (More details in section 4).

7. Open IntesisBox MAPS, create a new project selecting a template for IBOX-KNX-BAC.

8. Modify the configuration as desired, save it and download the configuration file to IntesisBox as explained in the IntesisBox MAPS user manual.

9. Visit the Diagnostic section, enable COMMS and check that there is communication activity, some TX frames and some other RX frames. This means that the communication with the BACnet devices and KNX devices is OK. In case there is no communication activity between IntesisBox and the BACnet installation, check that those are operative: check the baud rate, the communication cable used to connect all devices and any other communication parameter.
6 Electrical & Mechanical Features

| Enclosure | Plastic, type PC (UL 94 V-0)
| | Net dimensions (d\times w\times h): 90\times 88\times 56 \text{mm}
| | Recommended space for installation (d\times w\times h): 130\times 100\times 100 \text{mm}
| | Color: Light Grey, RAL 7035
| Mounting | Wall.
| | DIN rail EN60715 TH35.
| Terminal Wiring | Per terminal: solid wires or stranded wires (twisted or with ferrule)
| | 1 core: 0.5\text{mm}^2... 2.5\text{mm}^2
| | 2 cores: 0.5\text{mm}^2... 1.5\text{mm}^2
| | 3 cores: not permitted
| Power | 1 x Plug-in screw terminal block (3 poles)
| | 9 to 38\text{VDC} +/-10\%, Max.: 140\text{mA}
| | 24\text{VAC} +/-10\% 50-60Hz, Max.: 127\text{mA}
| | Recommended: 24\text{VDC}
| Battery | Size: Coin 20\text{mm} \times 3.2\text{mm}
| | Capacity: 3V / 225mAh
| | Type: Manganese Dioxide Lithium
| Ethernet | 1 x Ethernet 10/100 Mbps RJ45
| | 2 x Ethernet LED: port link and activity
| Port A | 1 x KNX TP-1 Plug-in screw terminal block orange (2 poles)
| | 2500\text{VDC} isolation from other ports
| | KNX power consumption: 5\text{mA}
| | Voltage rating: 29\text{VDC}
| | 1 x Plug-in screw terminal block green (2 poles)
| | Reserved for future use
| | 1500\text{VDC} isolation from other ports
| Protection | IP20 (IEC60529)
| USB port | Type-A USB 2.0 compliant
| | 150\text{VDC} isolation
| Push Button | Button A: KNX programming button (not used)
| | Button B: Will broadcast I-Am message in the BACnet network.
| Operation Temperature | 0°C to +60°C
| Operational Humidity | 5 to 95%, no condensation
| LED Indicators | 10 x On board LED indicators
| | 1 x Error LED
| | 1 x Power LED
| | 2 x Ethernet Link/Speed
| | 2 x Port A TX/RX
| | 2 x Port B TX/RX
| | 1 x Button A indicator
| | 1 x Button B indicator
| Switch A (SWA) | 1 x DIP-Switch for PORT A configuration:
| | Reserved for future use
| Switch B (SWB) | 1 x DIP-Switch for serial EIA485 configuration:
| | Position 1:
| | ON: 120 O termination active
| | Off: 120 O termination inactive (default)
| | Position 2-3:
| | ON: Polarization active (default)
| | Off: Polarization inactive
| PORT B | 1 x Serial EIA232 (SUB-D9 male connector)
| | Reserved for future use
| | 1 x Serial EIA485 Plug-in screw terminal block (3 poles)
| | A, B, SG (Reference ground or shield)
| | 1500\text{VDC} isolation from other ports (except PORT B: EIA232)
| Switch B (SWB) | 1 x DIP-Switch for serial EIA485 configuration:
| | Position 1:
| | ON: 120 O termination active
| | Off: 120 O termination inactive (default)
| | Position 2-3:
| | ON: Polarization active (default)
| | Off: Polarization inactive

100 \text{mm}
Recommended available space for its installation into a cabinet (wall or DIN rail mounting), with space enough for external connections.