Chipkin Modbus Explorer

User Manual

Product Code: CAS-1000-20
Manual Version: 1.0.0
Application Version: 1.2.0

Last Updated: January 22, 2026

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 1/190

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 2 /190

Table of Contents

e Part |: Chipkin Modbus Explorer
e Part Il: Modbus Protocol Reference
e Glossary of Modbus Terms

® Appendix: Indexes

Quick Links

® Getting Started

¢ Modbus Client

® Device Discovery
® Modbus Simulator
e Troubleshooting

e Protocol Reference (Appendix)

Part I: Chipkin Modbus Explorer

In This Section

e Introduction

e Getting Started

* Modbus Client

e Device Discovery
* Modbus Simulator
e Troubleshooting

e Support

This section covers using Chipkin Modbus Explorer for commissioning, testing, and troubleshooting Modbus devices.

Jump to the technical reference: Part Il: Modbus Protocol Reference

Introduction

Welcome to the Chipkin Modbus Explorer, a powerful and user-friendly tool designed to simplify your work with the Modbus
protocol. Whether you're commissioning a new device, troubleshooting a complex communication issue, or developing a Modbus-

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 3 /190

enabled application, this tool provides a comprehensive solution.

This manual serves as both a guide to the features of the Chipkin Modbus Explorer and a practical resource for understanding and

resolving real-world Modbus challenges.

Block Diagram

Chipkin Modbus Explorer

Modbus Master/Client
Modbus Slave/Senver

Modbus TCP / Modbus RTU
Ethernet R5485
Switch
Modbus TCP Modbus RTU
Ethernet RS485
Modbus TCP Modbus RTU
Ethernet RS485
More More
Modbus TCP Modbus RTU
Devices devices

Core Features

The Chipkin Modbus Explorer is organized around the three primary tasks you'll encounter when working with Modbus:

e Modbus Client: Manually send requests, write data, and interact directly with any Modbus TCP or RTU device. This is your

main tool for testing, commissioning, and debugging.

e Discovery: Automatically scan your network to find Modbus devices. This feature can save significant time by identifying

devices and their available data points without manual configuration.

e Simulator: Create a virtual Modbus slave on your computer. This is invaluable for developing and testing a Modbus master

application when physical hardware is not available.

Who Is This For?

This tool is designed for a diverse audience, including:

Chipkin Modbus Explorer (CAS-1000-20)

Last Updated: January 22, 2026

Page 4 / 190

e Controls Technicians and System Integrators: Quickly commission devices, verify installations, and troubleshoot

communication problems on-site.

e Software and Hardware Developers: Test your Modbus master or slave implementations against a reliable and compliant

tool. Use the Simulator to create various test cases and validate error handling.
¢ Facility Managers and Engineers: Diagnose network issues and confirm that devices are reporting data correctly.

e Anyone New to Modbus: Learn the protocol interactively in a clear and forgiving environment. See requests and
responses in real-time to understand how Modbus works.

If you encounter any issues, the Troubleshooting Guide is an excellent starting point.

Key Capabilities

e Universal Protocol Support: Connect to both Modbus TCP (over Ethernet) and Modbus RTU (over serial RS-232/RS-485)
devices.

e Complete Function Code Coverage: Supports all standard Modbus function codes for reading and writing data. For a
detailed reference, see the Modbus Protocol section.

¢ Flexible Data Interpretation: Automatically decodes 16-bit registers into 32-bit and 64-bit integers and floating-point
numbers. It provides full control over byte and word order (endianness) to resolve common data formatting issues.

e Advanced Logging: A clear, color-coded message log shows every byte sent and received, making it easy to diagnose
communication problems.

e Persistent Configurations: Save device configurations and settings to quickly resume your work.

* Import/Export Functionality: Load and save register lists from CSV files, which is ideal for documenting and sharing

device configurations.

Getting Started

This guide provides a practical walkthrough of the Chipkin Modbus Explorer, covering the fundamental concepts you need to start
communicating with Modbus devices.

Application Layout

The user interface is designed for simplicity and quick access to the main features.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 5/ 190

@ Chipkin Modbus Explorer — O *

@ Chipkin Modbus Explorer | Home @ Help

»

R

Welcome to Chipkin Modbus Explorer

A modern suite of utilities for working with Modbus devices and networks. Discover,
poll, and simulate Modbus TCP or RTU systems with powerful client and server
tools. Explore registers, monitor values, and debug communications with ease.

. Discover Devices £ Modbus Client |
[Automatically find Modbus devices on your network Manually connect to and communicate with Modbus
by scanning IP addresses, ports, and register ranges. devices. Configure connection parameters and send

read/write reguests.

Q. start Discovery £ Open Cliem

&8 Modbus Simulator

Start a virtual Modbus device simulator for testing
and development purposes.

@ show Modbus Simulator

| Chipkin Automation Systems Version 1.2.0 —):| Login

S

* Main Tools: The home screen features three prominent buttons that navigate to the core functionalities of the application:

o Modbus Client: For sending manual Modbus requests and analyzing responses.
o Discovery: To automatically find and identify Modbus devices on your network.

o Simulator: To create a virtual Modbus slave for testing purposes.

e Header Navigation: A persistent header at the top of the application allows you to return to the home screen from
anywhere and access this help manual.

Core Concepts: A Practical Example

The most common task in Modbus is reading data from a device. Let's walk through a typical scenario.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 6 / 190

Imagine a device manual states: "The current temperature is stored as a 16-bit integer in Holding Register 40108."
Here's how to read this value using the Chipkin Modbus Explorer:

1. Navigate to the Modbus Client: From the home screen, click on "Modbus Client".

2. Establish a Connection:

o For a Modbus TCP device, enter its IP Address (e.g., 192.168.1.100) and ensure the port is set to 502 .

o For a Modbus RTU device, select the correct COM port and configure the serial parameters (baud rate, parity,
etc.) to match the device.

o Click Connect. If you encounter issues, consult the Troubleshooting Guide.

3. Construct the Read Request:

© Function Code: Select @3: Read Holding Registers .
o Starting Address: Enter 107 .

© Quantity: Enter 1 .
4. Send the Request: Click the "Send Request" button.

The response from the device will appear in the log, and the value read from register 167 will be displayed in the results table.

Why Address 107? The #1 Point of Confusion

Modbus has two addressing schemes:

e Public Addressing (1-based): Used in device manuals (e.g., 40108). It's human-friendly.

e Protocol Addressing (0-based): Used in the actual Modbus message sent over the wire. It's a zero-indexed offset.

You must always convert the public address to a protocol address. The Chipkin Modbus Explorer exclusively uses protocol
addresses.

The conversion rule is: Protocol Address = Public Address - Register Type Offset

Register Type Public Address Range Example (Public) Protocol Address
- 1 11

Coils 00001 09999 00012

Discrete Inputs 10001 - 19999 10001 10055 54
Input Registers 30001 - 39999 30001 30200 199
Holding Registers 40001 - 49999 40001 40108 107

If you were to enter the public address 40108 into the address field, the device would correctly return an Exception 02: lllegal
Data Address, as this address is far outside its valid memory range.

What Do These Bytes Mean? The #2 Point of Confusion

Now, let's say the manual specifies: "The temperature is a 32-bit floating-point value stored across registers 40108 and 40109."

You read two registers starting at address 107 and the response contains two raw 16-bit values, for example, 17224 and 2052 .

How do you interpret this as a temperature?

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 7 /190

This is an endianness (or byte/word order) problem. The Modbus standard is big-endian, but not all manufacturers follow it. A 32-

bit value can be arranged in four different ways.

The Solution: The Chipkin Modbus Explorer automatically interprets multi-register values for you.

1. Read the two registers (107 and 108).

2. Examine the 32-bit Data Types view in the results section.

3. Look for the "Float" interpretations.

FLOAT32 (ABCD) FLOAT32 (DCBA)
3.765255e-30 1.478803e-41
8.0 8.0

88.9608002 -4.292711e+8

The tool displays the floating-point value for all four common byte order combinations. One of them will match the expected value

(e.g., 123.45). This instantly tells you the correct endianness for that device.

Quick Reference Cheatsheet

When the Manual Says... In Modbus Explorer, You Do This...

Read Holding Register 40010

Read Input Register 30005

Read Coil 00025

Write 756 to Holding Register 40050

Turn Coil 25 ON

Next Steps

Function:

Function:

Function:

Function:

Function:

03

01

06

o5

,Address: 9 , Quantity: 1
,Address: 4 , Quantity: 1
,Address: 24 , Quantity: 1
, Address: 49 , Value: 7se

, Address: 24 , Value: on

With a solid grasp of addressing and data representation, you are now equipped to use the full capabilities of the Chipkin Modbus

Explorer.

e Modbus Client: Explore advanced features for manual testing and analysis.

e Simulator: Learn to create a virtual Modbus device to test your own client applications without needing physical hardware.

Chipkin Modbus Explorer (CAS-1000-20)

Last Updated: January 22, 2026

Page 8 /190

e Modbus Protocol: Take a deep dive into the technical specifications of every function code and exception.

Modbus Client

The Modbus Client is your direct interface to any Modbus device. Use it to verify connections, read and write data, and diagnose

communication problems before integrating devices into a larger system.

This guide will walk you through connecting to devices, reading and writing data, and solving the most common issues you'll

encounter.

& Back @ Chipkin Modbus Explorer | % Modbus Client

£t Modbus Client Configuration

Connection Settings

Protocol

O & ModbusTecP () [|f Modbus RTU

IP Address Port

192.168.3.26

Request Configuration
Server Address Function Code
1 03 - Read Holding Registers

send Read Request [EEEVINSEIES

i Results

Chipkin Automation Systems

Chipkin Modbus Explorer (CAS-1000-20)

Timeout (sec)

1

Offset Length
v 0 100
o
No Data Yet

Configure your connection settings and click "Send Request” to
read data from your Modbus device.

Version 1.0.11

Last Updated: January 22, 2026

(@) Help

v

-#] Login

Page 9/ 190

What Problems Does It Solve?

"Is this device even working?" - Instantly verify connectivity and get a response.

"What data is in register 40108?" - Read any register and see its value in multiple formats.
"My data looks like garbage." - Fix scrambled data by correcting data types and byte order.
"I need to change a setpoint.” - Write new values to holding registers to control your device.

"Why am | getting a timeout?" - Diagnose connection issues with clear error messages and integrated troubleshooting.

Quick Start: Read a Temperature Sensor in 5 Steps
Let's solve the most common task: reading a temperature value from a Modbus TCP device.

Scenario: Your documentation says "Temperature is at Holding Register 40108" on a device with IP 192.168.1.50.

Step 1: Set Connection Details

e Protocol: TCP
e |P Address: 192.168.1.50
e Port: 502 (the standard)

e UnitID: 1 (asafe default)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 10/190

£X Modbus Client Configuration

Connection Settings

Protocol

© & ModousTcP (O [|f Modbus RTU

IP Address Port Timeout (sec)
192.168.3.133 202 1

Request Configuration

Server Address Function Code Offset Length
1 03 - Read Holding Registers w] 25

¥ Send Read Request () Auto-refresh

Step 2: Connect to the Device

e C(Click the Connect button.

e The status indicator should turn @ Green.

e Not green? Your first problem to solve. Jump to our Connection Troubleshooting section.

Step 3: Configure the Register to Read
This is where most users get stuck. Here's the secret:

® Function Code: 03 (for Reading Holding Registers, 4xxxx addresses).
e Address: 107 . Wait, what? See the note below.
e Quantity: 2 . Most floating-point values need two registers.

e Data Type: FLOAT32 . Temperature is rarely a whole number.

The Golden Rule of Modbus Addressing

Device manuals use Public Addresses (like 40108), but the protocol uses Protocol Addresses (107).

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 11 /190

The Formula: Protocol Address = Public Address - Table Start - 1

® for 4xxxx registers: 40108 - 40000 - 1 107

® for 3xxxx registers: 30050 - 30000 - 1 = 49

Our tool uses the Protocol Address. For a deep dive, see our Getting Started Cheatsheet.

Step 4: Add the Register and Read

e Click Add Row. The register appears in the table below.

e Click the main Read button at the top.

Step 5: Interpret the Result
You'll see a value. Does it make sense?

e Resultis 72.5 :Success! You've correctly read the temperature.

e Resultis 1.12e-35 or some other nonsense: You have a byte order problem. This is the second most common
Modbus issue.

o In the row you added, find the Byte Order dropdown.

o Try each of the four options (ABCD , BADC , CDAB , DCBA) and click Read again after each change. One of

them will show the correct value.

o For a full explanation, see our guide on Fixing Garbled Data.

You have now mastered the two biggest hurdles in Modbus: addressing and byte order.

Connecting to a Device

First, choose your protocol: TCP for network devices or RTU for serial (RS-232/RS-485).

TCP Connection

Use for devices connected via Ethernet.

m

IP Address The network address of your device. 192.168.1.100
Port The TCP port. Almost always se2 . 502

Unit ID The device's address on the Modbus link. 1 or 255
Timeout How long to wait for a response (in ms). 5000

RTU Connection

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 12/190

Use for devices connected via a COM port (e.g., a USB-to-Serial adapter).

COM Port The serial port on your computer. coM3 , CcoM4

Baud Rate Communication speed. Must match device. 9600, 19200

Parity Error checking. Must match device. None, Even
Data Bits Bits per character. Almost always s . 8
Stop Bits End of character marker. Almost always 1 . 1

I Pro Tip: The most common RTU setting is 9600 8-N-1 (9600 baud, 8 data bits, None parity, 1 stop bit). If that doesn't work, try
719200 8-E-1.

Connection Troubleshooting

If the indicator isn't € Green, here's what to do.

TCP Solution RTU Solution

A 1.Canyou ping theIP? 1. Baud Rate and Parity must be exact.
Connection . . .
Timeout 2. Check firewall rules. 2. Is the COM port correct? Check in Device Manager.
3. Is the device powered on? 3. Are TX/RX wires swapped?

1. Is another program (like PuTTY) using the COM
) 1. Is the port correct? (Try 502).
Connection Refused L . port?
2. |s another application using the port?])) .
2. Did you install the USB-to-Serial driver?

1.1s the Unit ID correct? Try 1 , then 1. Is the Unit ID correct?
No Response 255 . 2. For RS-485, are termination resistors installed?
2. See our detailed Timeout Errors Guide. 3. See our Triage Checklist.

Reading and Writing Data

The main table is where you build a list of registers to read or write.

Core Concepts for Reading Data

1. Function Code (FC): The operation you want to perform.
© @1 Read Coils : Read digital ON/OFF outputs (@xxxx).
© @2 Read Discrete Inputs :Read digital ON/OFF inputs (1xxxx).
© 03 Read Holding Registers : Read configuration/setpoint values (4xxxx). Most common.
0 04 Read Input Registers :Read sensor/measurement values (3xxxx). Second most common.

2. Address: The Protocol Address you calculated (e.g., 107).

3. Quantity: How many registers to read. For a 32-bit float, you need 2 registers. For a 64-bit value, you need 4.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 13/190

4. Data Type & Byte Order: How to interpret the raw bytes. If your value looks wrong, change the Byte Order. See Fixing
Garbled Data.

How to Read

1. Fill in the configuration form (Function Code, Address, Quantity, etc.).
2. Click Add Row.
3. Click Read.

4.The Value and Raw Hex columns will populate.

How to Write

You can only write to Coils (FC05, FC15) and Holding Registers (FC06, FC16).

1. First, read the register to see its current value.

2. Click the pencil icon (#”) in the row you want to change.

3. Enter the new value in the dialog and click Write.

4. The app automatically uses the correct function code (e.g., FCe6 for a single register, FC16 for a float).

5. Best Practice: Click Read again immediately to confirm the device accepted the new value.

Understanding the Results Table

Address The 0-based protocol address.

Public Address The 1-based address you see in manuals (e.g., 4e1e1).

Value The final, interpreted value based on your Data Type and Byte Order settings.
Raw Hex The actual hexadecimal bytes returned by the device. Invaluable for debugging.
Status Shows OK , ., Exception ,Or 3 Error .

If you get an exception, the device is talking, but it doesn't like your request. See our Exception Code Handler to translate the code
into a solution.

Import and Export (CSV)

Don't configure the same device twice. Use the Import and Export features to save your register maps to a CSV file.

e Export: Saves the current table (addresses, data types, etc.) to a file. Use this to document a device's configuration or
create a template.

e Import: Loads a register map from a CSV file. Use this to quickly configure the client for a known device.

Pro Workflow: Create a Device Template

1. Connect to a new device and configure all its important registers.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 14 /190

2. Verify all values are reading correctly.
3. Export the table to [DeviceModel]_template.csv .

4. The next time you work with this model, simply Import the template to load the entire configuration instantly.

Related Guides

e Getting Started: The essentials of Modbus, including the addressing and byte order cheatsheet.
e Discovery: Automatically find registers on an unknown device.

e Simulator: Create a virtual Modbus device for safe testing.

e Modbus Protocol: A reference for function codes and message structures.

e Troubleshooting Section: Your first stop for any problem.

Device Discovery

Device Discovery is your scanner for the Modbus world. Use it to automatically find devices, map out their registers, and figure out
what a device can do, especially when you have no documentation.

It's the first tool to use when you're faced with an unknown device or a new network.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 15/190

& Back @ Chipkin Modbus Explorer | <. Device Discovery @ Help

£¢ Discovery Configuration

o Connection Settings

) Protocol © & ModousTecP (O[]t Modbus RTU

@) 1P address Range 192.168.3.101 1 192.168.3.254 (optional)

Enter single IP or range (start - end)

@ Port 502 0 optional

o Device Settings

@ Server Address Range 1 to 32 @ Timeout (seconds) 1

e Scan Parameters

@ Register Range Offset 0 Length 1

@ Function Codes

(0x01) Read Coils (0x02) Read Discrele Inpuls
(0x03) Read Holding Registers (0x04) Read Input Registers
o Discover
B Combinations (O Estimated Time
> Start Discovery 1,280 21m 20s
Run discovery using the current configuration Worst case number of combinations 1o test Worst case estimated 1ime

Discovery Results

No discovery results yet

v

Chipkin Automation Systems Version 1.0.11 —):| Login

What Problems Does It Solve?

e "What devices are on this network?" - Scan an IP range to find all responsive Modbus TCP devices.
e "Which Unit IDs are active on this serial line?" - Scan a serial port to find all connected RTU devices.

¢ "l have no documentation. What registers does this device have?" - Scan a device to create a complete map of its

readable registers.
e "Is this device even a Modbus device?" - A successful discovery scan provides definitive proof.

* "l need to create a device template.” - Discover all registers, then export them as a CSV to create a reusable template for
the Modbus Client.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 16 /190

Quick Start: Find All Registers on a New Device

Let's solve the most common problem: you have a new device on your network at 192.168.1.120, but you have no idea what

registers it has.

Scenario: A Modbus TCP device is connected to your network. You need to find all its holding registers (4xxxx addresses).

Step 1: Set Connection Details

e Protocol: TCP
e |P Address: 192.168.1.120 (we'll scan just this one device)
e Port: 502 (the standard)

e UnitID: 1 (asafe default for a single device)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 17 /190

£ Discovery Configuration

€) cConnection Settings

(?) Protocol O & ModbusTcP () [|} Modbus RTU
,-r",:_:\.
+=/ IP Address Range 102.168.3.101 10 192.168.3.254 (optional)

Enter single IP or range (start - end)

Iy _
o) Port 502 10 optional

© Device Settings

) Server @) Timeout (seconds) 1
(?) Address 1 to 32 ~
Range
€) Scan Parameters
P .
') Register Range Dffset 0 Length 1
P
.2/ Function Codes
{(0x01) Read Coils (0x02) Read Discrete Inputs
{(0x03) Read Holding Registers (0x04) Read Input Registers

Step 2: Configure the Scan Parameters
This tells Discovery what to look for.

® Function Codes: Select @3 Read Holding Registers . This is the most common type.

® Address Range: Setitto @ to 100 . Most devices put their most important data in the first 100 registers. This keeps the

scan fast.

e Timeout: Leave it at 1000 ms. This is a safe default.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 18 /190

© Device Settings

73 Server @ Timeout (seconds) 1
7) Address 1 to 32 =
Range

€ Scan Parameters

I .
.2 Register Range Offset 0 Length 1

Py .
. Function Codes

(0x01) Read Coils (0x02) Read Discrete Inputs

(0x03) Read Holding Registers (0x04) Read Input Registers

Step 3: Start the Scan and Watch the Results

e Click the Start Discovery button.

e The progress bar will move, and results will appear in the table in real-time.

You are looking for rows with a Status of 4 OK .

e [OK :Success! A register was found at this address.

e 1, Exception : The device responded, but it doesn't have a register at this address. This is normal and helps you find
the boundaries of the register map.

e X Timeout : The device didn't respond at all. If you get all timeouts, you have a connection problem. See

Troubleshooting below.

Step 4: Analyze and Use the Results
Once the scan is complete, you'll have a list of all holding registers found between addresses 0 and 100.

e Review the Value column: Do the numbers look like temperatures, pressures, or status codes? This gives you clues

about what each register does.

e Click "Send to Modbus Client": This is the magic button. It takes all the discovered registers and automatically sets them
up in the Modbus Client for you.

e Continue in the Modbus Client: Now you can experiment with different data types (e.g., FLOAT32 , INT32) and byte
orders to interpret the data correctly.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 19/190

You have successfully mapped an unknown device.

How Discovery Works

Discovery is a brute-force testing tool, but a smart one. It systematically sends a read request for every combination of settings you
provide.

The Process:
1. You define the scope:

© Which devices to test (IP range or Unit ID range).
o Which function codes to try (83 , @4 , etc.).

o Which addresses to scan (©-100 , ©-9999 , etc.).

2. Discovery builds a test plan: It creates a list of every possible request.
3. It executes the plan: It sends requests one by one (or in parallel for TCP).
4. It records the outcome: OK , Exception ,or Timeout .

5. It displays the results: You get a complete map of what responded.

The tool includes optimizations like running TCP requests in parallel to dramatically speed up network scans.

Discovery Configuration In-Depth

Connection: TCP vs. RTU

First, choose your protocol.

e TCP: For devices on an Ethernet network. Much faster because it can scan multiple IPs at once.

e RTU: For devices on a serial line (RS-232/RS-485). Slower because it must test devices one at a time.

Scan Scope: Who to Scan

This defines the devices you want to test.

For TCP:
T N
IP Address The network address(es) to scan. Supports ranges, CIDR, and lists. 192.168.1.1-192.168.1.254

Port The TCP port(s) to test. se2 is standard. 502 OF 502, 1502
Unit ID The device address. For TCP, usually 1 or 255 . For gateways, use a range. 1 or 1-10

For RTU:

N
COM Port The serial port on your computer. com3

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 20/ 190

Baud Rate Communication speed. Must match the device. 9600 , 19200
Parity Error checking. Must match the device. None , Even

Unit ID The range of device addresses to scan on the serial bus. 1-10

I Pro Tip: For RTU, always start with a small Unit ID range like 1-16 . Scanning the full 1-247 range is very slow.

Scan Parameters: What to Look For

This defines the register data you want to find.

X The read operations to perform. e3 and es are the most .
Function Codes Start with e3 , thenadd es .
common.

The register addresses to scan. The tool uses Protocol))
Address Range Start with e-1ee for a quick scan.
Addresses (0-based).

Timeout (ms) How long to wait for a response. 1eee is a good balance.

Concurrent 20 foralocal network. 5 fora
How many TCP connections to run in parallel. Higher is faster.

(TCP) slow one.

Analyzing the Results

The results table tells you everything Discovery found.

Device The IP address or COM port of the device.
Unit ID The address of the device that responded.
Address The 0-based protocol address that was found.

Public Address The 1-based address you see in manuals (e.g., 4e1e1).
Value The raw value read from the register. This is your starting point for interpreting the data.

Status ok (found), .. Exception (address doesn't exist), or X Timeout (NO response).

From Discovery to Action

1. Filter for Success: Use the table filters to show only rows with Status = 0K . This is your list of valid registers.

2. Look for Patterns:

o Are the addresses in a solid block (e.g., 100 to 156)? This often means related data.

o Are there two registers together that look like a floating-point number?

3. Send to Modbus Client: This is the most important step. It saves you from manually typing every address.

4. Refine in the Client: In the Modbus Client, you can now:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 21/190

o Test different Data Types (FLOAT32 , INT32, etc.).
o Fix garbled values by changing the Byte Order.
o Add descriptions to each register.

5. Export as a Template: Once you have the register map perfected in the Modbus Client, Export it as a CSV. You now have
a reusable template for that device model.

Troubleshooting

Problem: The scan finds nothing (all timeouts).

This is a connection issue.

For TCP:
1.Can you ping the device? Open a command prompt and type ping 192.168.1.120 . If you get no reply, the device is
not on the network or your PC can't reach it.
2. Is a firewall blocking the port? Windows Firewall or a network firewall might be blocking port 502 .
3. Is the IP address correct? Double-check for typos.

4. Is the device powered on?

For RTU:

1. Are the serial settings correct? Baud rate, parity, data bits, and stop bits must exactly match the device's configuration.
The most common setting is 9600 8-N-1.

2. Is the COM port correct? Check in Windows Device Manager to see which COM port your USB-to-Serial adapter is using.
3. Are the wires swapped? For RS-485, try swapping the A/B (or +/-) wires.

4. Is another program using the port? Close any other serial communication tools.

Problem: The scan is taking forever.

You've made the scope too large. Click Cancel and reduce your settings.
1. Address Range: Change ©-9999 to ©-100 .
2. Unit ID Range (RTU): Change 1-247 to 1-10 .
3. Function Codes: Scan for one at a time, starting with @3 .

4. Concurrent (TCP): If your network is slow, a high number of concurrent connections can actually slow things down. Try
reducing it from 5@ to 10 .

Problem: The app crashes or the device stops responding during a scan.

The device can't handle the rapid-fire requests.

1. Reduce Concurrent Connections (TCP): Lower itto 5 oreven 1 .

2. Add a Delay (RTU): Set a small delay (e.g., 50 ms) between requests to give the device time to breathe.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 22 /190

Related Guides

e Modbus Client: Where you'll analyze the data you discover.
e Getting Started: For a refresher on Modbus basics like addressing.

e Troubleshooting Section: For a deep dive into connection and data issues.

Modbus Simulator

The Modbus Simulator creates a virtual Modbus device on your computer. It's a powerful tool for developing and testing Modbus
client applications (like an HMI or SCADA system) without needing any physical hardware.

Think of it as a "stunt double" for a real Modbus device. You can't break it, it does exactly what you tell it to, and it's always available.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 23 /190

@ Chipkin Modbus Explorer —] ®

X Close @ Chipkin Modbus Explorer | & Modbus Simulator ® Help

[

£ Connection Settings

Protocol

© & ModbusTCP (O {|* Modbus RTU
TCP Port

502

Server Address (Slave ID)

1

Loaded: Imported from V1.0.11 (modbus-points.csv) = 26 points

= Server Data

Filter: Search. x @ Load Points List a Save = Reset

Holding Registers Input Registers Coils Discrete Inputs

OFFSET MODBUS ADDRESS LABEL DATA TYPE VALUE -

8 4@901 room temp Unsigned 16-bit ~ 11

al 48002 humitity Signed 16-bit ~ 0

2 40003 ww Unsigned 32-bit (ABCD) v 1]

3 400084 Unsigned

4 48885 4five Float 32-bit (ABCD) v 889

5 26006 Unsigned

6 40087 u Signed 32-bit (ABCD) ~ 7

7 40608 Unsigned

8 40000 w Signed 32-bit (DCBA) v 9

o ape1e Unsigned

v

Chipkin Automation Systems Version 1.2.0 3] Login

What Problems Does It Solve?

e "] need to develop an HMI, but the hardware won't arrive for weeks." - Build your entire client application against the
simulator. When the real device arrives, just change the IP address.

e "How can | test if my client application handles Modbus errors correctly?” - Configure the simulator to send specific
exception codes to see how your app reacts.

e "l need to train a new technician on Modbus, but | don't want them breaking expensive equipment.” - Let them
practice reading and writing data in a safe, virtual environment.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 24 /190

e "My client can't talk to a device in the field. Is the problem my app or the device?" - Test your client against the

simulator. If it works, the problem is likely with the field device or network.

¢ "] need to demonstrate my application to a customer, but I'm not at the job site.” - Run the simulator on your laptop

to create a live, interactive demo.

Quick Start: Create a Virtual Temperature Sensor in 4 Steps
Let's simulate a simple Modbus TCP device with a single temperature sensor.

Scenario: You want to create a virtual device that has a temperature reading at Holding Register 40101 .

Step 1: Set Connection Details

e Protocol: TCP

e Listen Port: 502 (the standard). If you get a permission error, use a port above 1024, like 1502 .

e UnitID: 1

£X Modbus Client Configuration

Connection Settings

Protocol

© & ModousTcP (O [|f Modbus RTU

IP Address Port Timeout (sec)
192.168.3.133 202 1

Request Configuration

Server Address Function Code Offset Length
1 03 - Read Holding Registers w] 25

¥ Send Read Request () Auto-refresh

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 25/190

Step 2: Define the Virtual Register
This is where you create the data for your virtual device.

* In the Holding Registers table, click Add Row.

e Address: 100 (This is the protocol address for 40101 . See our addressing guide).
e Data Type: FLOAT32 . Temperatures are rarely whole numbers.

e Value: 72.5 .This is the starting temperature.

* Name: "Room Temperature".

£t Connection Settings

Protocol

(O & Modbus TCP © [|f Modbus RTU

Administrator privileges required for serial port access

Modbus RTU requires administrator privileges to access serial ports. Show notification bar to restart as administrator, or
switch to Modbus TCP for network connections.

Serial Port Baud Rate Data Bits Stop Bits Parity

COoM1 v 9600 w 8 w 1 w MNone w

Server Address (Slave D)

Loaded: Imported from ¥1.0.11 {modbus-points.csv) = 26 points

Step 3: Start the Simulator

e C(Click the Start Simulator button.
e The status indicator should turn @ Green.

* Not green? The most common issue is another application using port 502 . Try a different port like 1562 or 5020 .

Your virtual device is now running and waiting for a client to connect.

Step 4: Connect to it with the Modbus Client

1. Go to the Modbus Client tab.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 26 /190

2. Set the connection to TCP and the IP Address to 127.0.0.1 (which means "this computer").
3. Use the same Port and Unit ID you configured in the simulator.

4. Click Connect.

5. Add a row to read Holding Register 100 with a data type of FLOAT32 .

6. Click Read.

Success! The Modbus Client will show the value 72.5 . You have successfully created a virtual device and communicated with it.
You can even write a new value from the client, and you will see it update in the simulator's table.

How the Simulator Works

The simulator opens a network port (for TCP) or a serial port (for RTU) on your computer and listens for incoming Modbus requests.
When it receives a request, it looks up the address in its internal register tables and sends back a response, just like a real device
would.

e Fora Read request: It sends the value from its table.
e Fora Write request: It updates the value in its table and sends a success response.

e For a request to an unknown address: It sends an Illegal Data Address exception.

This allows you to simulate a complete Modbus device with thousands of data points, all running locally on your machine.

Simulator Configuration In-Depth

Connection: TCP vs. RTU

e TCP: The easiest and most common choice. It simulates a network device. Use this unless you have a specific need to test
serial communication.

e RTU: Simulates a serial device. This requires a virtual COM port pair (e.g., using com@com) to connect a client. Use this
only when you need to test RTU-specific timing or wiring scenarios.

Register and Coil Tables

The simulator provides four tables, one for each type of Modbus data.

Coils BXXXX Read/Write Simulating digital outputs (relays, lights).

Discrete Inputs 1XXXX Read-Only Simulating digital inputs (switches, alarms).

Input Registers 3xxXX Read-Only Simulating analog sensors (temperature, pressure).
Holding Registers 4xxxx Read/Write Simulating setpoints and configuration values.

Creating Your Device Profile (Import/Export)

Manually adding hundreds of registers is tedious. The Import and Export features are your best friends.

e Export: Saves the current set of all registers and coils to a CSV file. Use this to create a reusable template of a device.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 27 /190

e Import: Loads a register map from a CSV file, instantly configuring your simulator.

Pro Workflow: Create a Reusable Device Template

1. Configure the simulator with all the registers for a specific device model (e.g., a VFD or a power meter).
2. Export the configuration to a file named [DeviceModel]_template.csv .

3. The next time you need to test against that model, simply Import the template to load the entire configuration in seconds.

CSV File Format

The CSV file is simple. At a minimum, it needs Address and DataType .

Address,Name,DataType,Value,ByteOrder
100,Supply Temp,FLOAT32,72.5,ABCD
102,Return Temp,FLOAT32,68.0,ABCD
200,Setpoint, FLOAT32,75.0,ABCD

0,Fan Enable,BIT,1

Advanced Simulation Techniques

Simulating Errors and Exceptions

This is a key feature for testing the robustness of your client application.
How to Simulate an "lllegal Data Address" (Exception 02):

1. In the simulator, define registers only from address @ to 100 .
2. In your client, try to read address 200 .
3. The simulator will respond with Exception 02.

4. Verify: Does your client handle this gracefully? Does it show an error message without crashing?

How to Simulate a "Slave Device Failure” (Exception 04):

Some simulators allow you to configure a specific register to always return an exception. This is useful for testing how your client
handles a critical device fault.

Simulating Dynamic Data

Real-world data changes. A good simulator can mimic this.

e Manual Updates: You can click on any value in the simulator's tables and change it while it's running. The next time your
client reads that register, it will get the new value. This is great for testing HMI updates.

e Automatic Changes: Some simulators support scripting or pre-defined functions (e.g., sine wave, random walk, counter) to
make data change automatically over time. This is perfect for testing trend logs and alarm thresholds.

Testing Multiple Devices

The simulator can act as multiple devices at once.

e TCP: By responding to multiple Unit IDs on the same IP address and port, the simulator can mimic a gateway with several
devices behind it.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 28 /190

e RTU: It can respond to different Unit IDs on the same serial line.

Simply enter a comma-separated list of IDs in the Unit ID field (e.g., 1, 2, 5, 10).

Troubleshooting

Problem: The simulator won't start.

. Another application (or another instance of the simulator) is using that port. Change to a
"Port already in use” . .
different port like 1562 .

"Permission denied" (for ports On Windows, low-numbered ports require admin rights. Run the application as an
< 1024) administrator, or use a port > 1024.

. The selected COM port doesn't exist or is in use. Check Device Manager and close other
Invalid COM Port (RTU) <erial tools
i .

Problem: A client can't connect to the simulator.

1. Is the simulator running? Check for the € Green status.

2. Firewall: The Windows Firewall might be blocking the connection. Allow the application or the specific port through the
firewall.

3. Wrong IP Address: If connecting from the same machine, use 127.0.0.1 . If connecting from another machine, use the
full IP address of the computer running the simulator.

4. Wrong Port or Unit ID: Double-check that the client's settings exactly match the simulator's.

Problem: The client reads the wrong value.

This is almost always a data type or byte order issue.

1. Data Type Mismatch: Is the client trying to read a FLOAT32 asa UINT16 ? The raw bytes will be misinterpreted.

2. Byte Order Mismatch: This is the most common issue for 32-bit and 64-bit values. There are four possible byte orders. Try
changing the byte order in the client until the value reads correctly. The simulator lets you set up the same value with all
four byte orders to make this easy to test.

Related Guides

e Modbus Client: The perfect partner for testing your simulator.
e Device Discovery: Use the discovery tool to scan your own simulator.

e Getting Started: A refresher on Modbus fundamentals.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 29/190

Troubleshooting

This section provides solutions to common issues encountered when using the Chipkin Modbus Explorer.

Triage Checklist

Before diving into detailed troubleshooting, quickly review these common points of failure:

° Physical Connection: Are all cables securely connected? Is the device powered on?

. Connection Parameters: Do the [P address (for TCP) or COM port settings (for RTU) match the device?

° Protocol Settings: Do the baud rate, parity, data bits, and stop bits exactly match the device's configuration?

° Unit ID: Does the slave/unit ID in the explorer match the device's configured ID?

° Addressing: Are you using 0-based protocol addresses (e.g., 107) instead of 1-based public addresses (e.g.,
40108)?

° Function Code: Is the function code you are using supported by the device?

° Address Validity: Does the register address you are trying to access actually exist on the device?

° Data Format: Is the byte/word order correct for 32-bit or 64-bit data types?

Connection Issues

Modbus TCP Connection Failed

Symptoms: "Connection refused,” "Connection timeout," or the application fails to connect to a network device.
Solutions:

1. Verify Network Reachability: Use the ping command to check if the device is responsive on the network.

ping 192.168.1.100

If the ping fails, investigate the device's power, network cable, and IP address.

2. Check the Port: The standard Modbus TCP port is 502 . Some devices may use a custom port. Verify the correct port in

the device's documentation. Use a tool like Test-NetConnection in PowerShell to check if the port is open.

Test-NetConnection -ComputerName 192.168.1.100 -Port 502

3. Firewall Rules: A firewall on your computer or network may be blocking the connection. Temporarily disable the firewall to
test, and if successful, create an inbound rule to allow traffic on the Modbus port.

4. Unit ID: For TCP, the Unit ID is often 1 or 255 . Some devices are strict about this, while others are not. Try both if you

are unsure.

Modbus RTU (Serial) Connection Failed

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 30/190

Symptoms: "Port already in use," "Access denied," or failure to connect to a serial device.

Solutions:

1. Verify COM Port: Ensure you have selected the correct COM port. Use the Windows Device Manager to see a list of
available serial ports. If you are using a USB-to-serial adapter, make sure the correct drivers are installed.

2. Match Serial Parameters EXACTLY: The baud rate, parity, data bits, and stop bits must be identical on both the client and
the slave device. The most common configuration is 9600 baud, 8 data bits, no parity, and 1 stop bit (9600, 8, N, 1).

3. Check Physical Wiring:

o RS-232: This is a point-to-point connection. Ensure the transmit (TX) pin of one device is connected to the

receive (RX) pin of the other.

© RS-485: This is a multi-drop bus.

= Polarity: Ensure the A/+ and B/- lines are connected consistently across all devices. Incorrect polarity is

a common failure point.

= Termination: The two devices at the physical ends of the RS-485 bus must have a 120Q termination

resistor connected across the A and B lines.

4. Port in Use: If you get a "Port already in use" error, another application (like a terminal emulator or another Modbus tool)

has control of the COM port. Close the other application and try again.

Exception Responses

Exception responses are messages from the slave device indicating that it could not process the master's request.

Exception 01: lllegal Function

Meaning: The function code sent in the request is not supported by the device.

Solution: Consult the device's documentation to find out which function codes it supports. Stick to the basic function codes (01 ,
02, @3, @4, 05, 06, 15, 16)if you are unsure.

Exception 02: lllegal Data Address
Meaning: The requested address does not exist on the device. This is the most common exception.
Causes and Solutions:
e Using Public Address: You are likely using a 1-based public address (e.g., 40108) instead of the 0-based protocol

address (e.g., 107). The Chipkin Modbus Explorer requires 0-based protocol addresses.

e Address Out of Range: The address is simply not within the device's memory map. Check the device manual for the valid

address ranges.

e Requesting Too Many Registers: A request for a block of registers that extends beyond the valid memory range will fail.
For example, if a device has registers ©-99 , a request for 10 registers starting at address 95 will fail because it attempts

to read up to address 104 .

Exception 03: lllegal Data Value

Meaning: A value in the data field of the request is invalid.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 31/190

Solution: This is often caused by an incorrectly formatted request, such as a byte count that does not match the quantity of

registers. This is rare when using a tool like the Chipkin Modbus Explorer but can occur if the request is manually crafted.

Data and Display Issues

Garbled or Incorrect Values

Symptom: You receive a response, but the values are nonsensical (e.g., a temperature of 3.45e-41).
Cause: This is almost always a byte or word order (endianness) issue when reading 32-bit or 64-bit values.

Solution: The Chipkin Modbus Explorer automatically interprets multi-register values in all four common byte order combinations.
Simply look at the 32-bit Data Types or 64-bit Data Types view in the results section and find the interpretation that matches the
expected value. This will tell you the correct byte order for the device.

Values Off by a Factor of 10, 100, or 1000

Symptom: The value is numerically correct but seems to be missing a decimal point (e.g., you read 255 but expect 25.5).

Cause: The Modbus protocol itself does not handle floating-point numbers or scaling. It is common for devices to transmit a value

as an integer that must be multiplied or divided by a factor (usually a power of 10) to get the actual value.

Solution: Consult the device manual for the correct scaling factor. The Chipkin Modbus Explorer displays the raw integer value;
you must apply the scaling factor yourself.

Triage Checklist: First Steps in Troubleshooting

When you encounter a problem with Modbus communication, it's tempting to suspect a complex protocol issue. However, the vast
majority of problems are caused by simple, easy-to-fix issues. This checklist is your first line of defense. Before you dive into deep

diagnostics, quickly run through these steps to rule out the most common culprits.

1. Is Everything Plugged In and Powered On?
It sounds obvious, but it's the most frequent cause of failure.

e Slave Device: Ensure the Modbus slave device (your sensor, actuator, PLC, etc.) is powered on. Look for status lights.

e Cabling:

o For Modbus TCP: Is the Ethernet cable securely plugged into both the device and your network switch or
computer? Are there link lights on the Ethernet ports?

o For Modbus RTU (Serial): Is the RS-485 or RS-232 cable firmly connected to both the device and your USB-to-
Serial adapter?

2. Are You Using the Correct Settings in Modbus Explorer?

The Chipkin Modbus Explorer needs to know how to contact your device. Double-check the fundamental connection settings.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 32/190

e Correct Mode: Have you selected the right communication mode?

o Use TCP for network devices.

o Use RTU for serial devices (RS-232 or RS-485).

e Correct Address/Port:

o For TCP: Is the IP Address and Port (usually 502) correct? You can find this in the device's manual or network

configuration.

o For RTU: Have you selected the correct COM Port from the dropdown list? If you're unsure which COM port your
adapter is using, you can check in the Windows Device Manager under "Ports (COM & LPT)".

e Correct Slave ID:

o Every Modbus slave device on a bus needs a unique address, called a Slave ID (or Unit ID). This is a number from

1 to 247.

o This is the single most common point of failure. Ensure the Slave ID in the Modbus Explorer matches the ID

configured on the physical device.

Tool Spotlight: The Connection Panel

All of these critical settings are located in the main connection panel of the Modbus Client tab in the Chipkin Modbus Explorer.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 33/190

& Back @ Chipkin Modbus Explorer | & Modbus Client

£t Modbus Client Configuration

Connection Settings

Protocol

O & ModbusTCP () [|f Modbus RTU

IP Address Port
192.168.3.26 502
Request Configuration
Server Address Function Code
1 03 - Read Holding Registers

¥ Send Read Request () Auto-refresh

i Results

Chipkin Automation Systems

Before proceeding to more advanced troubleshooting, make sure every setting in this panel has been verified.

Next Steps

Timeout (sec)

1

Offset Length
~ 0 100
o
No Data Yet

Configure your connection settings and click "Send Request” to
read data from your Modbus device.

Version 1.0.11

(@) Help

v

-#] Login

If you have confirmed all the points on this checklist and still cannot communicate with your device, your next step depends on the

symptom:

¢ If you are getting no response at all (a timeout error): Proceed to Troubleshooting Timeout Errors.
¢ |f you are getting an error message back from the device: Proceed to Decoding Modbus Exceptions.

¢ If you are getting a response, but the data looks wrong: Proceed to Investigating Garbled Data.

Chipkin Modbus Explorer (CAS-1000-20)

Last Updated: January 22, 2026

Page 34 /190

Troubleshooting Timeout Errors

A "timeout" is the most common error in Modbus. It means the master (Chipkin Modbus Explorer) sent a request, but the slave
device never sent a reply. The master waited for a specified amount of time and then gave up.

This is "The Silent Treatment.” Your device isn't even saying "no"—it's saying nothing at all. This almost always points to a
fundamental problem with the physical connection or the core addressing.

Diagnosing Timeouts on Modbus RTU (Serial)

Serial communication is prone to physical layer issues. If you're getting timeouts, the problem is likely in the wiring or the COM port
settings.

1. Incorrect COM Port Settings

For two serial devices to talk, they must agree on the "language” of the electrical signals. If their settings don't match, the receiving
device will not understand the message.

e Symptoms:

o Consistent timeout errors.
© In the Message Log, you might see your request (TX) but no response (RX).

o Occasionally, you might see a response, but it's garbled or has a CRC error.

e Solution:

1. Find the device manual for your slave device.

2. Locate the section on serial communication settings. It will specify the required Baud Rate, Parity, Data Bits, and
Stop Bits.

3. In the Chipkin Modbus Explorer, carefully set these parameters to match the device's requirements exactly.

4. Common Default: Many devices default to 9600 baud, 8 data bits, no parity, 1 stop bit (often written as 9600,
8 N, 1).

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 35/190

£ Modbus Client Configuration

Connection Settings

Protocol

O & ModousTcP (@) {If ModbusRTU

Administrator privileges required for serial port access

Modbus RTU requires administrator privileges to access serial ports. Show notification bar to
restart as administrator, or switch to Modbus TCP for network connections.

Serial Port Baud Rate Data Bits Stop Bits
COomM1 wr 9600 “ g " 1 e
Parity Timeout (sec)
None “ 1

Request Configuration

Server Address Function Code Offset Length

1 03 - Read Holding Registers v 0 25

¥ Send Read Request (] Auto-refresh

2. RS-485 Wiring Problems

RS-485 uses a two-wire system (plus a ground reference). It's robust, but sensitive to correct wiring.
e Symptoms:

o Intermittent timeouts, especially if multiple devices are on the same bus.

o Communication works with one device but fails when you add more.

e Solutions:

o Check Polarity: The two wires are typically labeled A and B (or D+ and D-). The ‘A" on your adapter must connect
to the 'A’ on all slave devices, and 'B' must connect to 'B'. If you swap them, communication will fail. If you're
unsure, try swapping the two wires.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 36 /190

o Use Termination Resistors: In RS-485, the devices at the physical start and end of the bus need a termination
resistor (usually 120 Ohm) connected across the A and B terminals. This prevents signal reflections. Without
proper termination, the bus can become unreliable, especially on long cable runs or at high baud rates.

3. RS-232 Wiring Problems

RS-232 is simpler as it's point-to-point, but wiring is still a common issue.

e Symptoms: Consistent timeouts.

e Solution: RS-232 requires at least three wires: Transmit (TX), Receive (RX), and Ground (GND). The TX pin of the master
must connect to the RX pin of the slave, and the RX of the master must connect to the TX of the slave. If a direct cable
doesn't work, you may need a null modem adapter, which performs this crossover for you.

Diagnosing Timeouts on Modbus TCP/IP

Modbus TCP runs over standard computer networks, so troubleshooting involves common network diagnostics.

1. Basic Network Connectivity Issues

e Symptoms: The Modbus Explorer shows a "Connection Refused" or "Timeout" error immediately.

e Solution: Use the ping command to test basic connectivity.

1. Open a Command Prompt (cmd.exe).
2. Type ping <device_ip_address> (e.g., ping 192.168.1.55).

3. If you get a reply: The device is on the network and reachable. The problem is likely a firewall or an incorrect
Modbus setting.

4. If you get "Destination host unreachable” or "Request timed out”: The device is not on the network, is
powered off, or there is a fundamental network configuration problem (e.g., your PC and the device are on
different subnets).

2. Firewall Blocking

e Symptoms: The device responds to ping , but the Modbus Explorer still times out.
e Solution: Modbus TCP uses port 502. Firewalls on your PC or on the network can block this port.
o Windows Firewall: Temporarily disable the Windows Firewall to see if communication starts working. If it does,
you need to add an inbound and outbound rule to allow traffic on TCP port 502.

o Network Firewall: Contact your IT department to ensure that port 502 is not being blocked by a network firewall
between your computer and the device.

3. Incorrect Slave ID on Gateways

e Symptoms: You are connecting to a Modbus TCP-to-RTU gateway. The connection to the gateway itself seems to work,
but any request for data times out.

e Solution: A gateway acts as a bridge. When you send a Modbus TCP request to it, the gateway forwards that request onto
its serial bus. The Slave ID (or Unit ID) in the TCP message tells the gateway which serial device to talk to.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 37 /190

o Ensure the Slave ID in the Modbus Explorer matches the ID of the target device on the serial side of the gateway.

If you set it to 0 or 255, some gateways may not forward the message correctly.

Next Steps

If you have resolved your timeout errors but are now receiving specific error codes from the device, proceed to Decoding Modbus

Exceptions.

Decoding Modbus Exception Responses

Congratulations! If you're on this page, it means you have established successful communication with your slave device. The "Silent

Treatment" is over. Your device is now talking back.

However, it's not sending you data. Instead, it's sending you a specific Exception Response. This is a message with a special error
code that tells you why it cannot fulfill your request. Understanding these codes is the key to solving the next layer of Modbus

problems.

Tool Spotlight: The Message Log

The Chipkin Modbus Explorer's Message Log is your best friend for diagnosing exceptions. A normal request/response pair looks
like this:

e TX: 01 03 00 00 00 01 84 OA (Requestto read 1 register)

e RX: @1 03 02 00 OA F8 44 (Response with the data)

An exception response is different. The function code in the response will be the original function code plus 128 (0x80).

e TX: 01 03 00 00 00 01 84 OA (Requestto read 1 register)

e RX: @1 83 02 41 30 (Exception Response)

Notice the 83 in the response. Thisis @3 (Read Holding Registers) + 128 (©x80). The next byte, 02 , is the Exception Code.

Common Exception Codes and How to Fix Them

Here are the most common exception codes you will encounter and what they mean.

Exception Code 01: lllegal Function

e What it means: You have asked the device to perform an action it does not support. For example, you sent a "Write

Multiple Coils" (Function Code 15) request to a device that only has registers.

e How to Fix:

1. Consult the Device Manual: The device's documentation is the ultimate source of truth. It will contain a

"Modbus Register Map" or similar section that lists all supported function codes.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 38 /190

2. Check Your Action: Are you trying to write to a read-only value? For example, you can't "write" to an Input

Register (Function Code 04). You must use "Read Input Registers."

3. Cross-reference our protocol documentation:

= 07: Read Coils
= (03: Read Holding Registers
= 05: Write Single Coil

= 06: Write Single Register

Exception Code 02: lllegal Data Address

e What it means: This is the most common exception. You are trying to read from or write to a register or coil that does not
exist on the device.

e The Cause: 0-based vs. 1-based Addressing:

o Device manuals often list registers starting from 1 (e.g., "Holding Register 40001").

o The Modbus protocol itself addresses registers starting from 0. So, register 40001 is actually at protocol address
0.

o Ifyou try to read register 40001 by requesting address 40001 , you are asking for a register that is far outside

the device's memory map, resulting in an "lllegal Data Address" exception.

e How to Fix:
1. Do the Math: Remember that the protocol address is Register Number - Offset .

= For Holding Registers (4xxxx), the offset is 40001. So, register 40001 is address 0.

= For Input Registers (3xxxx), the offset is 30001. So, register 30001 is address 0.

2. Use the Chipkin Modbus Explorer: The Explorer handles this for you! Simply enter the register number (e.g.,
40001) and it will automatically use the correct protocol address (@) in the background.

3. Probe the Device: If you're unsure of the exact register map, start at address 0 and try to read one register. If it
works, try address 1, and so on, until you get an exception. This can help you discover the valid range of

addresses.

Exception Code 03: lllegal Data Value

* What it means: The address and function code are valid, but the data you sent in a "write" request is not acceptable to the
device.

e How to Fix:
o Check the Device Manual: The documentation for the specific register may define an allowable range of values.

For example, a register for a fan's speed might only accept values from 0-5. Trying to write a value of 10 would

cause an "lllegal Data Value" exception.

o Check Data Type: Are you trying to write a value that doesn't make sense? For example, writing the value 2 to

a single coil (which can only be © for OFF or 1 for ON, represented as ©x0000 or OxFF0).

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 39/190

Exception Code 04: Slave Device Failure

e What it means: This is a more serious, generic error. The slave device encountered an unrecoverable error while trying to

process the request. This is not a problem with your request, but a problem within the slave device itself.

e How to Fix:

o Power Cycle: The first step is to turn the slave device off and on again.
o Check Device Status: Look for any fault lights or error messages on the device's physical display.

o Consult Manufacturer: If the problem persists, it may indicate a hardware fault, and you should contact the

device manufacturer for support.

Next Steps

If you are now able to read data but the values seem incorrect or nonsensical, it's time to investigate data formatting issues.

® Proceed to Investigating Garbled Data.

Investigating Garbled Data

You've established communication and you're getting responses without exceptions. You're in the home stretch! However, the data
you're reading doesn't make sense. A temperature sensor is reading 1078024704 or a pressure value is -2.35e+38 .

This is a classic data interpretation problem. The raw data is being transmitted correctly, but the master (Chipkin Modbus Explorer) is
not interpreting the bytes in the way the slave device intended. Modbus itself only transmits a series of 16-bit registers; it has no
concept of a "float" or a "signed integer.” The master must know how to reassemble and interpret these registers.

Tool Spotlight: The 32-Bit Data View

The Chipkin Modbus Explorer has a powerful feature specifically for solving these problems. When you read a set of registers, the
main view shows you the raw 16-bit values. Below that, the 32-bit Data Types view shows you what those same registers represent

when interpreted as different 32-bit and 64-bit data types.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 40/ 190

FLOAT32 (ABCD) FLOAT32 (DCBA)

3.765255e-30 1.476883e-41
g8.e g8.e
82.068882 -4.,202711=48

This view is the key to solving all of the following common data issues.

Common Data Interpretation Problems

1. Wrong Endianness (Byte and Word Swapping)
This is, by far, the most common cause of "garbled" 32-bit values (like floats or large integers).
e What it is: A 32-bit value is stored across two 16-bit Modbus registers. There is no universal standard for which order the
bytes and words should be in. Endianness refers to this ordering.
e The Symptom: You read a value you know should be 25.5 , but it appears as a massive, nonsensical number.

¢ The Solution:

1. Read the two registers that hold your 32-bit value.
2. Look at the 32-bit Data Types view in the Modbus Explorer.

3. The view displays four common byte/word orderings (endian formats) simultaneously:

= Big Endian (ABCD)
= Little Endian (DCBA)
= Mid-Big Endian (BADC)

= Mid-Little Endian (CDAB)

4. Scan down the list. One of these values will almost certainly be the correct, expected number. This instantly tells

you the endianness of your device.

2. Incorrect Data Type

e What it is: You are interpreting the registers as the wrong kind of number.

e The Symptom: The value looks like a valid number, but it's not what you expect. For example, you expect a floating-point

temperature like 25.5 , but you see a large integer like 2550 .

¢ The Solution:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 41/190

1. Look at the device's Modbus map. It should specify the data type for the register (e.g., "32-bit float", "16-bit
signed integer"”, "32-bit unsigned integer").

2. In the Modbus Explorer's 32-bit Data Types view, find the row that corresponds to the correct data type.

3. This is common with devices that use scaling factors. They may store the temperature 25.5 as the integer
255 and expect the master to know to divide by 10.

3. Signed vs. Unsigned Integers

* What it is: You are reading a negative number, but it's showing up as a very large positive number.

e The Symptom: A known negative value, like -1 ,is displayed as 65535 (for a 16-bit integer) or 4294967295 (for a 32-
bit integer).

* The Solution:
o This is a classic sign of interpreting a signed integer (which can be positive or negative) as an unsigned integer
(which can only be positive).

o The Modbus Explorer's data view shows both interpretations. Simply look at the "Signed" value instead of the
"Unsigned" one. For example, the raw 16-bit register @xFFFF is 65535 when interpreted as unsigned, but -1
when interpreted as signed.

You've Mastered Modbus

If you've followed the guides this far—from making the initial connection, to decoding exceptions, to correctly interpreting the data
—you have successfully troubleshot the vast majority of issues you will ever encounter with Modbus.

Support

This page provides information on how to get help, report issues, and stay updated with the latest versions of the Chipkin Modbus
Explorer.

Technical Support
If you encounter any issues or have questions, our support team is here to help.

e Website: www.chipkin.com
e Email: support@chipkin.com

e Phone: +1 (866) 383-1657

Our support hours are Monday to Friday, 9:00 AM to 5:00 PM Pacific Time.

Reporting Bugs

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 42 /190

https://www.chipkin.com/
mailto:support@chipkin.com

If you believe you have found a bug, please help us by providing as much detail as possible.

1. Describe the Issue: Clearly explain what happened and what you expected to happen.
2. Steps to Reproduce: Provide a step-by-step account of how to trigger the bug.

3. Include Logs: The message log is invaluable for debugging. Copy and paste the relevant portion of the log from the
Modbus Client.

4. Screenshots: A picture is often worth a thousand words. Include screenshots of the application state if possible.

Please send all bug reports to support@chipkin.com.

Feature Requests

We are always looking to improve the Chipkin Modbus Explorer. If you have an idea for a new feature or an improvement to an
existing one, please let us know.

e Email: Send your suggestions to support@chipkin.com with the subject line "Feature Request".

® Describe Your Use Case: Explain the problem you are trying to solve and how the proposed feature would help.

Software Updates
The Chipkin Modbus Explorer includes an auto-update feature to ensure you always have the latest version.

e Automatic Checks: The application will automatically check for updates on startup.

e Manual Checks: You can manually check for updates by navigating to Help > Check for Updates in the application

menu.

When an update is available, you will be prompted to download and install it. Release notes for each version are available within the
application and on our website.

Part II: Modbus Protocol Reference

In This Section

® Modbus Protocol Reference
® Modbus Addressing
® Modbus Data Model
® Modbus Message Structure

e Modbus Exception Responses

This section is a protocol-focused appendix you can use as a reference while using Chipkin Modbus Explorer.

Back to the user guide: Part I: Chipkin Modbus Explorer

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 43 /190

mailto:support@chipkin.com
mailto:support@chipkin.com

Modbus Protocol Reference

Complete technical documentation for understanding and implementing the Modbus protocol.

What is Modbus?

Modbus is an industrial communication protocol for connecting electronic devices:

e Open: Freely available specification
e Simple: Easy to implement
e Mature: Industry standard since 1979

e Versatile: Works over serial and TCP/IP networks

Originally developed by Modicon (now Schneider Electric) for programmable logic controller (PLC) communication, Modbus has
become one of the most widely used industrial protocols worldwide. It is commonly used in SCADA systems, building automation,
industrial control, and energy management.

Protocol Reference Sections

Fundamentals
Data Model - Understanding the four tables (coils, discrete inputs, input registers, holding registers)

Message Structure - PDU, ADU, framing, and error checking

Addressing - Public vs protocol addressing, the off-by-one error

Protocol Variants

Modbus TCP/IP

e Transport: Ethernet network (TCP/IP)

e Port: 502 (standard IANA assigned)

e Model: Client/server with multiple client support
e Error Checking: TCP checksums

e See: Modbus Technical Reference - TCP/IP Section

Modbus RTU (Remote Terminal Unit)

e Transport: Serial communication (RS-232/RS-485)
® Model: Master/slave (poll-response)
e Encoding: Binary with CRC-16 error checking

e See: Modbus Technical Reference - RTU Section

Modbus ASCII

e Transport: Serial communication

e Encoding: ASCII characters (human-readable)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 44 /190

e Error Checking: LRC (Longitudinal Redundancy Check)

e Usage: Rare in modern systems, legacy support only

Tip — Protocol Variant Compatibility

Modbus RTU and Modbus ASCII are not interoperable. An RTU master cannot communicate with an ASCII slave. Always verify
which variant your device supports.

Read Functions

FCo1 Read Coils Details Boolean outputs

FC02 Read Discrete Inputs Details Boolean inputs

FCO03 Read Holding Registers Details 16-bit words (most common)
FC04 Read Input Registers Details 16-bit words (read-only)

Write Functions

T

FCO05 Write Single Coil Details Force coil ON/OFF
FC06 Write Single Register Details Write 16-bit value
FC15 Write Multiple Coils Details Write 1-1968 coils
FC16 Write Multiple Registers Details Write 1-123 registers

Diagnostic Functions

_

FCO08 Diagnostics Details Communication health testing

FC11 Get Comm Event Counter Details Message counter (serial only)

Advanced Functions

I Y

FC23 Read/Write Multiple Registers Details Atomic read and write

FC43 Read Device Identification (MEI) Details Device vendor/model info

Exception Handling

Exception Overview - How Modbus reports errors

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 45/190

Individual Exception Codes:

o L e

01 lllegal Function Details
02 lllegal Data Address Details
03 lllegal Data Value Details
04 Server Device Failure Details
05 Acknowledge Details
06 Server Device Busy Details
08 Memory Parity Error Details
0A Gateway Path Unavailable Details
0B Gateway Target Failed to Respond Details

Data Types and Encoding
For information about data types, byte ordering, scaling, and floating-point numbers:

¢ Modbus Technical Reference - Data Types

¢ Modbus Technical Reference - Byte Ordering

Physical Layer and Connection
For information about serial connections (RS-232, RS-485), network topologies, and physical wiring:

¢ Modbus Technical Reference - Serial Communications

e Modbus Technical Reference - Multi-Drop Networks

Best Practices

For Implementing a Modbus Stack

If you're building a Modbus stack from scratch, follow this learning path:

1. Understand the Data Model - Read the data model page

2. Learn Message Structure - Study PDU and ADU formats

3. Master Addressing - Understand the off-by-one error

4. Implement Read Functions - Start with FCO3 (Read Holding Registers)
5. Add Write Functions - Implement FCO6 (Write Single Register)

6. Handle Exceptions - Learn exception response format

7. Test with Real Devices - Use Chipkin Modbus Explorer's simulator

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 46 /190

8. Add Advanced Functions - Implement additional function codes as needed

Quick Reference for Common Tasks

Reading Process Data:

e Use FCO3 - Read Holding Registers for most data
e Use FCO4 - Read Input Registers for read-only sensor data

e Batch multiple registers in single request (max 125 registers)

Writing Control Values:

e Use FCO6 - Write Single Register for single values
e Use FC16 - Write Multiple Registers for atomic updates

e Always read back to confirm critical writes

Controlling Digital Outputs:

e Use FCO5 - Write Single Coil for single relay/output

e Use FC15 - Write Multiple Coils for multiple outputs

Troubleshooting Communication:

e Check for exception responses
e Use FCO8 - Diagnostics for loopback tests

e Review Troubleshooting Guide

Related Resources

e Getting Started Guide - Quick start for using Chipkin Modbus Explorer
e Modbus Client - Using the client/master features
e Modbus Simulator - Creating virtual Modbus devices

e Glossary - Modbus terminology reference

External References

e Modbus Organization Official Site
e Modbus Application Protocol Specification V1.1b3
® Modbus over Serial Line Specification V1.02

®* Modbus Messaging Implementation Guide V1.0b

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 47 /190

https://modbus.org/
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
https://modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf

Modbus Addressing

Modbus addressing is one of the most confusing aspects of the protocol. There are two different addressing schemes used

simultaneously, leading to the notorious "off-by-one error" that trips up both beginners and experienced developers.

The Two Addressing Schemes

Public Address (Display Address)

This is how addresses appear in documentation, user interfaces, and device manuals:

5-Digit Format (Traditional - supports up to 9,999 points per table):

Coils 00001 - 09999 00027
Discrete Inputs 10001 - 19999 10105
Input Registers 30001 - 39999 30009

Holding Registers 40001 - 49999 40108

6-Digit Format (Extended - supports up to 65,535 points):

Coils 000001 - 065535 000027
Discrete Inputs 100001 - 165535 110105
Input Registers 300001 - 365535 330009

Holding Registers 400001 - 465535 440108

How to Read Public Addresses:

Example: 40108

First digit(s): Table identifier

0 = Coils

1 = Discrete Inputs
3 = Input Registers
4 = Holding Registers

Remaining digits: Point number within table
0108 = The 108th holding register

Protocol Address (Wire Address)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 48 /190

This is what actually goes inside Modbus messages. It's a 0-based offset from the start of each table:

Coils 0x0000 - OxFFFF 0x001A (26)
Discrete Inputs 0x0000 - OxFFFF 0x0068 (104)
Input Registers 0x0000 - OxFFFF 0x0008 (8)

Holding Registers 0x0000 - OxFFFF 0x006B (107)

Key Insight: Protocol addresses are 0-based, meaning they start at 0, not 1.

The Off-By-One Error

The Problem

Public address and protocol address differ by 1:

Public Address: 40108

Table: Holding Registers (indicated by '4")
Point Number: 108 (the 108th holding register)
Protocol Address: 107 (because first point is ©, not 1)

The Conversion:

Public » Protocol: Subtract 1 from the point number
Protocol » Public: Add 1 to the point number

Real-World Examples

Example 1: Holding Register 40001

Public Address: 40001
Point Number: 1 (first holding register)
Protocol Address: © (0x0000)

Modbus Request to read 40001:
Function Code: 0x03
Address: 0x0000 « NOT 1!
Quantity: 0x0001

Example 2: Holding Register 40108

Public Address: 40108
Point Number: 108
Protocol Address: 107 (0x006B)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 49/190

Modbus Request to read 40108:
Function Code: 0x03
Address: 0x006B « This is what goes on the wire
Quantity: 0x0001

Example 3: Coil 00027

Public Address: 00027
Point Number: 27
Protocol Address: 26 (©x001A)

Modbus Request to read coil 00027:
Function Code: 0x01
Address: 0x001A
Quantity: 0x0001

Example 4: Input Register 30009

Public Address: 30009
Point Number: 9
Protocol Address: 8 (0x0008)

Modbus Request to read input register 30009:
Function Code: 0x04
Address: 0x0008
Quantity: 0x0001

Conversion Process

Public to Protocol Address
Step-by-Step:

1. Identify the table type from first digit(s)
2. Extract the point number (remaining digits)
3. Subtract 1 to get protocol address

4. Select appropriate function code based on table

Example: Read "40256"

Step 1: First digit '4' -» Holding Register table
Step 2: Point number = 256

Step 3: Protocol address = 256 - 1 = 255 (Ox@0FF)
Step 4: Function code = 0x03 (Read Holding Registers)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 50/ 190

Result Request:

[03][0@ FF][@0 01]

FC Addr

Qty

Protocol to Public Address

Step-by-Step:

1. Function code determines table type

2. Add 1 to protocol address

3. Prepend table identifier

Example: Response to FC03, address 0x006B

Step 1:
Step 2: Ox006B =
Step 3: Public address

Conversion Table Reference

Quick Reference:

00001

00100

10001

10100

30001

30100

40001

40100

40108

Why This Confusion Exists

Coill

Coil

Discrete Input
Discrete Input
Input Register
Input Register
Holding Register
Holding Register

Holding Register

Historical Reasons

Original Modicon PLCs (1970s):

100

100

100

100

108

FCO3 - Holding Registers - Prefix '4'
107 decimal » 107 + 1 =
= 40108

108

0x0000

0x0063

0x0000

0x0063

0x0000

0x0063

0x0000

0x0063

0x006B

FCO1, FCO5, FC15

FCO1, FCO5, FC15

FC02

FC02

FC04

FC04

FCO3, FCO6, FC16, FC23

FCO3, FCO6, FC16, FC23

FCO3, FCO6, FC16, FC23

e Physical I/0 points numbered starting at 1 (human-friendly)

e Documentation used 1-based numbering

Chipkin Modbus Explorer (CAS-1000-20)

Last Updated: January 22, 2026

Page 51/190

e First relay coil was "Coil 1", first register was "Register 1"

Modbus Protocol Design:

e Computer science convention: Arrays start at 0
e First element has offset 0 from start of memory

e More efficient for processors

Result:

e User-facing documentation uses 1-based (public address)
* Protocol messages use 0-based (protocol address)

¢ Translation required at the interface

Modern Impact

This dual-addressing persists today because:

e Backwards compatibility with existing documentation
e Industry familiarity with 5/6-digit format

e Standards maintain historical conventions

Common Mistakes

Mistake 1: Using Public Address Directly

Wrong:

Want to read: Holding Register 40001
Send: [@3][00 01][00 01]
FC Addr=1 Qty

Result: Reads holding register 40002 instead!

Correct:

Want to read: Holding Register 40001
Send: [03][00 00][00 01]
FC Addr=e Qty

Mistake 2: Forgetting Table Independence

Wrong Assumption: "Address 0 means the same thing for all function codes"

Reality:

FCO1, Address © -» Coil 00001
FCO2, Address © - Discrete Input 10001

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 52 /190

FCO3, Address @ - Holding Register 40001
FCo4, Address @ - Input Register 30001

All different memory locations!

Mistake 3: Off-By-One in Range Calculations

Scenario: Read holding registers 40100-40109 (10 registers)

Wrong:

Start: 40100 - Protocol 100
End: 40109 -» Protocol 109
Quantity: 109 - 100 = 9 <« WRONG!

Reads only 9 registers (40100-40108)

Correct:

Start: 40100 - Protocol 99
Quantity: 10 (explicit count)

OR

Start point: 40100 (point #100)

End point: 40109 (point #109)

Quantity: (109 - 109) + 1 = 10 registers
Protocol start: 100 - 1 = 99

Using Chipkin Modbus Explorer

Chipkin Modbus Explorer uses 0-based protocol addressing (what's actually on the wire).

Reading Holding Register 40108

Option 1: Direct Protocol Address

1. Function Code: 03 (Read Holding Registers)
2. Starting Address: 107 « Protocol address
3. Quantity: 1

Option 2: Using Conversion (if Ul provides it)

Some tools offer conversion calculators:

Chipkin Modbus Explorer (CAS-1000-20)

Last Updated: January 22, 2026

Page 53 /190

Enter Public Address: 40108
Tool converts to: 107

Automatically sets function code: 03

Example: Multiple Register Read

Want to read: 40100 through 40109 (10 registers)

Start public: 40100
Start protocol: 100 - 1 = 99

Function Code: @3
Starting Address: 99
Quantity: 10

Response will contain:

Byte Count: 20 (10 registers x 2 bytes)
Data: [Register 40100][Register 40101]...[Register 40109]

Address Calculation Formulas

For Implementation

Public to Protocol:

FUNCTION publicToProtocol(publicAddress):
addressString = CONVERT_TO_STRING(publicAddress)

// Determine table from first digit
firstDigit = GET_FIRST_CHAR(addressString)

IF firstDigit == '@":
functionCode = 1 // Coils
ELSE IF firstDigit == '1':

functionCode = 2 // Discrete Inputs
ELSE IF firstDigit == '3':
functionCode = 4 // Input Registers

ELSE IF firstDigit == '4':
functionCode = 3 // Holding Registers
END IF

// Extract point number (remaining digits)
pointNumberString = SUBSTRING(addressString, 1)
pointNumber = CONVERT_TO_INTEGER(pointNumberString)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 54 /190

// Convert to protocol address (@-based)

protocolAddress = pointNumber - 1

RETURN { functionCode, protocolAddress }
END FUNCTION

// Example usage:
result = publicToProtocol(40108)
// Returns: { functionCode: 3, address: 107 }

Protocol to Public:

FUNCTION protocolToPublic(functionCode, protocolAddress):
// Determine table prefix
IF functionCode IN (1, 5, 15):
prefix = '@"' // Coils
ELSE IF functionCode ==
prefix = '1' // Discrete Inputs
ELSE IF functionCode IN (3, 6, 16, 23):
prefix = '4' // Holding Registers
ELSE IF functionCode == 4:
prefix = '3' // Input Registers
END IF

// Convert protocol address to point number (1-based)
pointNumber = protocolAddress + 1

// Format as 5 or 6 digit address

pointString = FORMAT_STRING(pointNumber, "0000") // Pad with leading zeros
publicAddressString = prefix + pointString

publicAddress = CONVERT_TO_INTEGER(publicAddressString)

RETURN publicAddress
END FUNCTION

// Example usage:
publicAddr = protocolToPublic(3, 107)
// Returns: 40108

Best Practices

For Documentation

1. Always specify which addressing you're using

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 55/ 190

Good: "Read holding register 40108 (protocol address 107)"
Bad: "Read address 107" (which addressing scheme?)

2. Use public addressing for user documentation

o More intuitive for end users
© Matches device manuals

o Standard industry practice

3. Use protocol addressing for implementation

o Matches actual wire protocol
o Easier to validate against captures

o Less conversion errors

For Implementation

1. Convert at the boundary

User Input (Public) - Convert - Internal (Protocol) - Wire
Wire -» Internal (Protocol) - Convert - Display (Public)

2. Store addresses in protocol format internally

o Matches Modbus messages directly
o Simpler message construction

o Convert only for display
3. Validate ranges before conversion

if (address < 40001 || address > 449999) {

throw new Error("Invalid holding register address");

4. Test boundary conditions

o First address (40001 — 0)
o Last address (65535 — 65534)

o Maximum quantity reads

Related Topics

Data Organization:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 56 / 190

e Data Model - The four tables and their characteristics

e Glossary - Address - Terminology definitions

Protocol Details:

e Message Structure - How addresses fit into messages
e FCO3 - Read Holding Registers - Address usage example
e FCO6 - Write Single Register - Writing to addresses

Error Handling:

e Exception 02 - lllegal Data Address - Invalid address errors

Implementation:

e Modbus Client Guide - Using addresses in Chipkin Modbus Explorer

e Troubleshooting - Addressing problems

Modbus Data Model

Modbus was originally designed for programmable logic controller (PLC) programming and data transfer. It organizes all data into

four separate memory tables, each with specific characteristics and usage patterns.

The Four Tables

. Function -
Table Name Data Type Access Addressing Original Use
Codes
Coils (0xxxx) Boolean Read/Write 0-65535 01, 05, 15 Binary outputs (relay coils)
Discrete Inputs (1xxxx) Boolean Read-only 0-65535 02 Binary inputs
. 16-bit .
Input Registers (3xxxx) q Read-only 0-65535 04 Analog inputs
wor
Holding Registers 16-bit . Analog outputs,
Read/Write 0-65535 03, 06, 16, 23 . .
(4xxxx) word configuration

Historical Context

Understanding why these four tables exist helps clarify when to use each one.

Original Modicon PLC Design

When Modbus was created in 1979, Modicon programmable logic controllers had different types of physical I/O modules:

Coils (Outputs)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 57 /190

e Named after electromagnetic relay coils
e Controlled physical relay outputs
e Could energize or de-energize coils to open/close contacts

e Typical use: Turning motors, valves, lights ON/OFF

Discrete Inputs (Digital Inputs)

e Connected to binary sensors and switches
e Read-only from Modbus perspective
o Reflected physical state of input terminals

e Typical use: Limit switches, push buttons, proximity sensors

Input Registers (Analog Inputs)

e Connected to analog input modules (4-20mA, 0-10V)
e Read-only from Modbus perspective

e 16-bit values representing sensor readings

e Typical use: Temperature sensors, pressure transducers, flow meters

Holding Registers (General Storage)

® Writeable memory areas

e Used for setpoints, configuration parameters

e Could be connected to analog output modules
e Also used as PLC scratch pad memory

e Typical use: PID setpoints, timer presets, counters, configuration

Modern Usage Evolution

While the original hardware distinctions have blurred, the four-table model persists:

Modern Devices May:

e Implement all four tables in software (no actual physical 1/0)
e Use holding registers exclusively (most flexible)
e Map the same physical I/0 to multiple tables

e Use tables for logical organization rather than hardware mapping

Common Modern Patterns:

Coils:

- Digital control points

- Alarm acknowledgments

- Mode selection (Auto/Manual)

Discrete Inputs:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 58 /190

e Alarm status flags

e« Equipment running status

o« Digital sensor states

Input Registers:

e Process measurements (temperature, pressure, flow)

e Calculated values (averages, totals)

¢ Status information

Holding Registers:

o Configuration parameters

e Setpoints and limits

e Counters and accumulators

e« Any read/write data

Tip — Modern Best Practice

Most modern devices primarily use holding registers for maximum flexibility. Many devices allow both reading and writing

holding registers, even if the data represents "input" values. Always consult device documentation.

Table Characteristics

Boolean Tables (Coils and Discrete Inputs)

Data Type: Single bit (ON/OFF, TRUE/FALSE, 1/0)
Storage:

e Bits packed into bytes for transmission

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 59/ 190

e LSB (Least Significant Bit) first

e Partial bytes padded with zeros

Example: Reading 10 coils returns 2 bytes (10 bits + 6 padding bits)
Maximum Quantity per Request:

e Read: Up to 2000 bits (FCO1, FC02)
e Write: Up to 1968 bits (FC15)

Common Uses:

e Relay outputs (coils)
e Alarm indicators
* Mode flags

e Digital sensor states

See also: FCO1 - Read Coils, FCO2 - Read Discrete Inputs

Register Tables (Input Registers and Holding Registers)

Data Type: 16-bit unsigned integer (0-65535)
Byte Order: Big-endian (high byte first) per Modbus specification

e First byte: Most significant 8 bits
e Second byte: Least significant 8 bits

e See: Byte Ordering

Maximum Quantity per Request:

e Read: Up to 125 registers (FC03, FC04)
e Write: Up to 123 registers (FC16)

Why These Limits?

Modbus PDU maximum size: 253 bytes
e Function code (1) + byte count (1) + data = 253 bytes
e Forreads: 1+ 1+ (125 x 2) = 251 bytes vV

e For writes: 1 + address (2) + quantity (2) + byte count (1) + (123 x 2) = 252 bytes v

Multi-Register Data Types:

While individual registers are 16-bit, consecutive registers can represent larger values:

UINT16 16-bit Unsigned 0-65535
INT16 1 16-bit Signed -32768 to 32767
UINT32 2 32-bit Unsigned long integers
INT32 2 32-bit Signed long integers

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 60 /190

FLOAT32 2 32-bit IEEE 754 floating point

UINT64 4 64-bit Very large unsigned integers
INT64 4 64-bit Very large signed integers
FLOAT64 4 64-bit Double precision float

See also: Data Types Reference

Scaling and Engineering Units

Important: Modbus registers are just numbers. The protocol has no concept of engineering units or scaling.
Example Problem:

e Device measures 58.5°C
® Modbus register is 16-bit integer (no decimal point)

* How to represent 58.57

Solution: Scaling convention

Device measures: 58.5°C

Device multiplies by 10: 58.5 x 10 = 585
Device stores in register: 585

Modbus transmits: 585

Client receives: 585
Client divides by 10: 585 + 10 = 58.5
Client displays: 58.5°C

Critical: Scaling is a convention between device and client, documented by device manufacturer. It is not part of the Modbus
protocol.

Common Scaling Factors:

e x10 (one decimal): Temperature, voltage, current
e x100 (two decimals): Precise measurements, currency
e %1000 (three decimals): Scientific measurements

e x1000000 (six decimals): High-precision applications

See also: Modbus Technical Reference - Scaling

Table Address Ranges

Original Specification (9,999 Points)
The original Modbus specification supported up to 9,999 data points per table:

e Coils: 00001 - 09999
e Discrete Inputs: 10001 - 19999

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 61/190

® |nput Registers: 30001 - 39999
e Holding Registers: 40001 - 49999

Modern Extended Addressing (65,535 Points)

Modern implementations support the full 16-bit address space:

e Coils: 000001 - 065535

e Discrete Inputs: 100001 - 165535

® Input Registers: 300001 - 365535

e Holding Registers: 400001 - 465535

The first digit (or first two digits) identifies the table type.
Warning — Address Confusion

The addressing scheme is one of the most confusing aspects of Modbus. See Addressing for complete explanation of public vs
protocol addresses and the off-by-one error.

Choosing the Right Table

Decision Matrix

For Digital/Boolean Data:

Read-only status (sensors, alarms) Discrete Inputs (FC02)

Read/write control (relays, outputs) Coils (FC01, FCO5, FC15)

For Numeric Data:

Read-only values (measurements) Input Registers (FC04)
Read/write values (setpoints, config) Holding Registers (FC03, FC06, FC16, FC23)

Maximum flexibility Holding Registers (most versatile)

Real-World Examples

Temperature Sensor:

Device: Temperature transmitter

Measurement: 72.5°F

Storage: Input Register 30001 (value = 725, scale =10)
Access: Read-only via FCo4

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 62 /190

Setpoint:

Device: Temperature controller

Setpoint: 70.0°F

Storage: Holding Register 40001 (value = 700, scale +10)
Access: Read/write via FCO3 (read), FCO6 (write)

Pump Control:

Device: Pump controller

Control: Start/Stop command

Storage: Coil 00001

Access: Read/write via FCO1l (read status), FCO5 (write command)

Alarm Status:

Device: Safety system

Status: High temperature alarm
Storage: Discrete Input 10001
Access: Read-only via FCO2

Table Independence
Important Concept: The four tables are completely independent.
This means:
e Coil 00001 is different from Holding Register 40001
® You can have Coil 5, Discrete Input 5, Input Register 5, and Holding Register 5 all in the same device

e Each table has its own address space (0-65535)

e Function codes determine which table is accessed

Example:

FCO1l, Address 0x0005 - Reads Coil 6 (public address ©0006)

FCO2, Address 0x0005 - Reads Discrete Input 6 (public address 10006)
FCO3, Address 0x0005 - Reads Holding Register 6 (public address 40006)
FCO4, Address 0x0005 - Reads Input Register 6 (public address 30006)

All four operations access different memory locations in the device.

Device Implementation Variations

Not All Devices Implement All Tables

Common Patterns:

Simple Devices:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 63 /190

e May only implement holding registers

e All data accessed via FC03/FC06/FC16

Legacy Devices:

e May strictly separate read-only (input registers) from read/write (holding registers)

* Attempting to write input registers returns Exception 01 (lllegal Function)

Modern Flexible Devices:
e May allow reading from all four tables
e May allow writing to "input” registers (device-specific)

e May mirror same data across multiple tables

Sparse Address Maps

Devices typically don't implement all 65,535 addresses:

Typical Device:

Coils:
00001-00050: Control outputs (50 coils)

Discrete Inputs:
10001-10032: Digital inputs (32 inputs)

Input Registers:
30001-30100: Measurements (100 registers)

Holding Registers:
40001-40100: Process data (100 registers)
40201-40300: Configuration (100 registers)
40501-40550: Diagnostic counters (50 registers)

Accessing undefined addresses results in Exception 02 (lllegal Data Address).

Tip — Finding Valid Addresses
Always consult device documentation (register map or memory map) to find valid addresses. Chipkin Modbus Explorer's Discovery

feature can help identify available addresses automatically.

Related Topics
Understanding Addressing:

e Addressing - Public vs protocol addresses, off-by-one error

Reading Data:

e FCO1 - Read Coils

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 64 /190

® FCO2 - Read Discrete Inputs
® FCO3 - Read Holding Registers

® FCO04 - Read Input Registers

Writing Data:

® FCO5 - Write Single Coil
e FCO06 - Write Single Register
e FC15 - Write Multiple Coils

e FC16 - Write Multiple Registers

Data Representation:

e Modbus Technical Reference - Data Types
® Modbus Technical Reference - Byte Ordering

e Glossary - Data Model Terms

Error Handling:

e Exception 02 - lllegal Data Address

® Exceptions Overview

Modbus Message Structure

Understanding how Modbus messages are constructed is essential for implementing a Modbus stack or troubleshooting
communication issues.

Message Hierarchy
Every Modbus transaction consists of two parts:

Client Request - [MESSAGE] - Server/Slave
Server Response « [MESSAGE] <« Server/Slave

Each message has a layered structure:

Application Data Unit (ADU)

Additional Header (TCP only)

Protocol Data Unit (PDU)

I
|
|
[
|
|
|
|
|

| Function Data

T

|

| code |
L I

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 65/ 190

Error Check (RTU/ASCII only)

Protocol Data Unit (PDU)

The PDU is the core Modbus message, independent of underlying communication layer.

PDU Structure

I T
| Function Code| Data

| (1 byte) | (e-252 bytes)
L |

Maximum PDU Size: 253 bytes

e 1 byte function code

e Up to 252 bytes of data

Function Code (1 byte)

The function code tells the server what operation to perform:

_

1-64 Public function codes (defined in specification)
65-72 User-defined function codes
73-99 Public function codes (defined in specification)

100-110 User-defined function codes

111-127 Reserved for future use

Exception Response: If function code > 128 (0x80), it's an exception response

e Exception FC = Normal FC + 0x80
e Example: FCO3 exception = 0x83 (0x03 + 0x80)

See: Function Code Reference, Exceptions

Data Field (0-252 bytes)

Content varies by function code. Common patterns:

Read Request:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 66 / 190

T T T

| Function Code| Start Address | Quantity
| (1 byte) | (2 bytes) | (2 bytes)
L 1 |

Read Response:

| | T

| Function Code| Byte Count | Register Values
| (1 byte) | (1 byte) | (N bytes)

| ! |

Write Request:

T T T T

I 1
Function Code	Address	Quantity	Byte	values
(1 byte)	(2 bytes)	(2 bytes)	Count	(N bytes)
			(1 byte)]	
L |

Exception Response:

T T 1
| Function Code| Exception Code |
| + ox8e | (1 byte) |
|
|

| (1 byte) |
L |

See individual function pages for exact data field formats.

Application Data Unit (ADU)

The ADU wraps the PDU with additional addressing and error-checking information. The ADU format differs between Modbus TCP
and Modbus RTU/ASCII.

Modbus TCP ADU

MBAP Header |

I T T 1

| Transaction | Protocol | Len | unit
| ID (2 bytes) | ID (2 bytes) [(2) |ID (1)
L I I I

PDU (Function Code + Data)

MBAP Header Fields:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 67 /190

Transaction ID 2 bytes Request/response matching identifier

Protocol ID 2 bytes Always 0x0000 for Modbus
Length 2 bytes Number of following bytes (Unit ID + PDU)
Unit ID 1 byte Slave address (1-247, or 255 for broadcast)

Total TCP ADU Size:

e MBAP header: 7 bytes
e PDU: 1-253 bytes
e Total: 8-260 bytes

Example - Read Holding Register:

MBAP Header:
Transaction ID: ©x0001

Protocol ID: 0x0000
Length: 0x0006 (6 bytes to follow)
Unit ID: 0x01

PDU:
Function: 0x03 (Read Holding Registers)
Start Address: ©x006B (register 107)
Quantity: 0x0001 (1 register)

Complete TCP ADU:
[00 01][00 00][00 ©6][01] [0©3][00 6B][00 01]
Trans Proto Len Unit FC Addr Qty

Tip — No CRC in Modbus TCP

Modbus TCP does not include CRC or error checking in the ADU. Error detection is handled by the TCP layer (TCP checksums).

See: Modbus Technical Reference - TCP/IP

Modbus RTU ADU

T T T 1
| unit ID | PDU | crRc-16 |
| (1 byte) | (Function Code + Data) | (2 bytes)|
L | 1 I

RTU ADU Fields:

IO

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 68 /190

Unit ID 1 byte Slave address (1-247, 0 = broadcast)
PDU 1-253 bytes Function code + data

CRC-16 2 bytes Error checking (LSB first)

Total RTU ADU Size:

e Unit ID: 1 byte
e PDU: 1-253 bytes
e CRC: 2 bytes

e Total: 4-256 bytes

Example - Same Read Request in RTU:

Unit ID: 0x01
PDU:
Function: 0x03
Start Addr: 0x006B
Quantity: 0x0001
CRC-16: OxC5B4 (calculated)

Complete RTU ADU:
[01][03][00 6B][00 01][B4 C5]
Unit FC Addr Qty CRC(LSB,MSB)

CRC Calculation:

The CRC-16 is calculated over all bytes except the CRC itself:

CRC Input: [@1 ©3 00 6B 00 01]
CRC Output: ©xC5B4
Transmitted: [B4 C5] (LSB first)

Warning — CRC Byte Order

The CRC is transmitted LSB first (low byte, then high byte), which is the opposite of data values in Modbus.

Silent Interval:
Modbus RTU requires silence on the line before and after each message:

e Minimum gap: 3.5 character times
e At 9600 baud: ~3.6ms
e At 19200 baud: ~1.8ms

e Marks the beginning and end of frames

See: Modbus Technical Reference - RTU

Modbus ASCII ADU

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 69/ 190

[T I I
| ":* | unit ID| PDU | LRC|
| | (2 char)|(ASCII hex chars) |(2) |
L 1 1 1 1

ASCII ADU Fields:

m

Start 1 byte Colon character "' (0x3A)
Unit ID 2 bytes Slave address as ASCII hex (e.g., "01")

Function Code 2 bytes Function as ASCII hex (e.g., "03")

Data Variable Data as ASCII hex pairs
LRC 2 bytes Longitudinal Redundancy Check as ASCII hex
End 2 bytes Carriage Return + Line Feed (0xOD 0x0A)

Example - Same Read Request in ASCII:

Start: gl

Unit ID: "@1" (ASCII 'e' '1')
Function: "@3"

Address: "006B"

Quantity: "eee1l"

LRC: "F6" (calculated)
End: CR LF

Complete ASCII ADU:
:01 03 00 6B 00 01 F6 <CR><LF>

LRC Calculation:

. Add all bytes (as binary): 01 + 03 + 00 + 6B + 00 + 01 = Ox70
Two's complement: 0x100 - Ox70 = 0Ox90

Result: oOx90

Transmit as ASCII: "90"

AW N R

Character Encoding:

e Each byte becomes 2 ASCII hex characters
e Example: Byte 0x6B — ASCII "6B" (characters '6' and 'B')

® Message size doubles compared to RTU

Warning — ASCII Rarely Used

Modbus ASCII is rarely used in modern systems due to inefficiency (double size) and slower speed. Most implementations use
Modbus RTU or Modbus TCP.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 70 /190

Byte Ordering

Register Values (Data)

Modbus Standard: Big-Endian (Network Order)

Multi-byte values are transmitted most significant byte first:

16-bit Register Value: ©x022B (555 decimal)

Transmission order:
Byte 1: 0x02 (high byte)
Byte 2: 0x2B (low byte)

For 32-bit Values (two registers):

Standard requires high register first, but device implementations vary:

Value: ©x00 ©1 E2 40 (123,456 decimal)

Standard (Big-Endian ABCD):
Register 1: 0x0001
Register 2: ©xE240
Bytes: [00][01][E2][490]

However, non-compliant devices may use other byte orders. See: Byte Ordering Reference

CRC in RTU (Error Check)

Exception: LSB First

The CRC-16 value is transmitted least significant byte first:

CRC Value: ©xC5B4

Transmission order:
Byte 1: OxB4 (low byte)
Byte 2: OxC5 (high byte)

This is the only place in Modbus where LSB-first order is used.

Message Examples

FC03 Read Holding Registers - Complete Transaction

Scenario: Read 2 registers starting at address 40108 (protocol address 107)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 71 /190

Modbus TCP Request:

[00 ©1][00 ©0][00 06][01]
Trans Proto Len Unit
D D

Breakdown:
Transaction ID: ©x0001
Protocol ID: 0x0000
Length: 0x0006
Unit ID: 0x01
Function: 0x03
Start Address: ©x006B
Quantity: 0x0002

Modbus TCP Response:

T MBAP
[60 ©1][00 00][00 ©7][01]
Trans Proto Len Unit

Breakdown:
Transaction ID: ©x0001
Protocol ID: 0x0000
Length: 0x0007
Unit ID: 0x01
Function: 0x03
Byte Count: ox04 (4

T MBAP Header PDU —

[63][00 6B][00 02]
FC Addr Qty

(for matching response)
(always @ for Modbus)

(6 bytes follow)

(device 1)

(Read Holding Registers)
(107 decimal)

(2 registers)

Header T PDU
[63][04][02 2B][00 ©0]
FC ByteCt Regl Reg2

(matches request)

(7 bytes follow)

bytes of data = 2 registers)

Register 107: 0x022B (555 decimal)
Register 108: 0x0000 (0 decimal)

Same Transaction in Modbus RTU:

RTU Request:

[01][03][00 6B][00 ©2][B4

RTU Response:

Chipkin Modbus Explorer (CAS-1000-20)

5]

Unit FC Addr Qty CRC

Breakdown:
Unit ID: ox01
Function: 0x03
Start Address: 0x006B
Quantity: 0x0002
CRC-16: OxC5B4 (transmitted LSB first as B4 C5)

Last Updated: January 22, 2026

Page 72 /190

[01][03][04][02 2B][00 ©0][63 3A]
Unit FC ByteCt Regl Reg2 CRC

Breakdown:
Unit ID: ox01
Function: 0x03
Byte Count: 0x04

Register 107: ©0x022B
Register 108: ©0x0000
CRC-16: Ox3A63 (transmitted as 63 3A)

FC06 Write Single Register - Complete Transaction

Scenario: Write value 3 to register 40002 (protocol address 1)

Modbus TCP Request:

[00 ©2][00 00][00 ©6][01] [@6][00 ©1][00 03]
Trans Proto Len Unit FC Addr Value

Modbus TCP Response (Echo):

[00 62][00 00][00 06][01] [@6][00 ©1][00 03]
(Exact echo of request confirms write)

Exception Response Example

Scenario: Request invalid address, receive exception 02

Modbus TCP Request:

[00 ©3][00 ©0][00 06][01] [03][04 Al][00 01]
Trans Proto Len Unit FC BadAddr Qty

Modbus TCP Exception Response:

[60 ©3][00 00][00 ©3][01] [83][02]
Trans Proto Len Unit ErrFC ExCode

Breakdown:
Transaction ID: 0x0003 (matches request)
Function: 0x83 (0x03 + 0x80 = exception)
Exception Code: ©x02 (Illegal Data Address)

See: Exception 02 - Illegal Data Address

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 73 /190

Implementing Message Construction

Building a Request

Algorithm:
1. Determine function code (FCO1-FC43, etc.)
2. Build data field according to function specification
3. Combine FC + Data = PDU
4. Add framing:

- For TCP: Add MBAP header
- For RTU: Add Unit ID, calculate and append CRC
- For ASCII: Convert to ASCII hex, add ':', LRC, CR-LF

. Transmit

Parsing a Response

Algorithm:

1. Receive message

2. Validate framing:

- For TCP: Check MBAP header, verify length
- For RTU: Verify silent interval, check CRC
- For ASCII: Verify ':', LRC, CR-LF

3. Extract PDU

. Check function code:

- If FC < 128: Normal response
- If FC >= 128: Exception response

5. Parse data field according to function code

. Return parsed result to application

Error Detection

TCP:

RTU:

TCP layer handles error detection with checksums
Application validates MBAP header fields

Check for exception responses

Calculate CRC-16 over received bytes
Compare with received CRC
If mismatch: Discard message (no response)

If match: Process message

ASCII:

Calculate LRC over received bytes

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 74 /190

e Compare with received LRC
e Validate start "' and end CR-LF

e If error: Discard message

Related Topics
Protocol Basics:

e Data Model - The four tables
e Addressing - Public vs protocol addressing

e Protocol Index - All function codes

Function Code Specifications:

e FCO3 - Read Holding Registers - Most common function
e FCO6 - Write Single Register - Write example

e All Function Codes

Error Handling:

e Exceptions Overview - How errors are reported

e Exception Code List

Implementation Details:

e Modbus Technical Reference - TCP
e Modbus Technical Reference - RTU

® Glossary - Protocol Terms

Modbus Exception Responses

When a Modbus server cannot process a request normally, it returns an exception response instead of a normal response.
Exception responses provide diagnostic information about what went wrong.

Exception Response Format

How to Recognize an Exception

Normal Response:

[03][04][00 @A][00 14]
FC ByteCt Data...

Exception Response:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 75/ 190

[83][02]
FC ExCode

AMAN MSB set to 1

FC = 0x83 = 131 decimal = 0x03 + 0x80

Rule: If the function code in the response > 128 (0x80), it's an exception response.

Exception PDU Structure

|
| Exception Function

| = FC + ox8e

T
I

| Code (1 byte) | (1 byte)
I

L 1

Exception Code

Exception Function Code:

e Original function code with MSB set to 1

e Calculated as: Original FC + 0x80 (or Original FC | 0x80)

Examples:

Normal FC Exception FC Calculation

0x01 Read Coils

0x03 Read Holding Registers
0x06 Write Single Register
0x10 Write Multiple Registers

Exception Codes

Standard Exception Codes

0x81

0x83

0x86

0x90

0x01 + 0x80 = 0x81

0x03 + 0x80 = 0x83

0x06 + 0x80 = 0x86

0x10 + 0x80 = 0x90

lllegal Function

02 lllegal Data Address
03 lllegal Data Value
04 Server Device Failure
05 Acknowledge

06 Server Device Busy

Chipkin Modbus Explorer (CAS-1000-20)

Function code not supported

Address doesn't exist Reading/writing undefined memory
Value in query invalid Malformed request, bad quantity
Unrecoverable error Hardware fault, internal error

Long operation accepted Programming command in progress
Device processing long operation Retry later

Last Updated: January 22, 2026

Device doesn't implement this function

Page 76 / 190

08 Memory Parity Error Extended memory error File record parity check failed
0A Gateway Path Unavailable Gateway misconfigured No route to target device

0B Gateway Target Failed to Respond No response from target Device offline or not responding

Reserved Codes:

e 07, 09: Reserved (not used)

e 0C-FF: Reserved for future use or vendor-specific

Complete Exception Example

Example: Reading Invalid Address

Request: Read holding register at non-existent address

Modbus TCP Request:

[00 01][00 00][00 06][01] [03][04 Al][00 01]
Trans Proto Len Unit FC Addr Qty

Request Details:
Transaction ID: 1
Function: @3 (Read Holding Registers)
Address: ©x04A1 (1185 decimal = register 41186)
Quantity: 1

Assumption: Device only has registers ©0-999

Modbus TCP Exception Response:

[00 01][00 @][00 ©3][01] [83][02]
Trans Proto Len Unit ErrFC ExCode

Response Details:
Transaction ID: 1 (matches request)
Length: 3 (1 Unit ID + 1 FC + 1 ExCode)
Function: ©x83 (@x03 + 0x80 = exception)
Exception Code: ©x02 (Illegal Data Address)

Meaning: Address 1185 doesn't exist in this device

Modbus RTU Request:

[01][03][04 A1][00 ©1][XX XX]

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 77 /190

l Unit FC Addr Qty CRC
Modbus RTU Exception Response:

[01][83][0@2][XX XX]
Unit ErrFC ExCode CRC

Exception Response Flow

Normal Response Flow

Client Request -» [FC=03][Address][Quantity]
l
Server Processing » v Address exists
v/ Quantity valid
v Read successful
l
Server Response - [FC=03][ByteCount][Data...]

Exception Response Flow

Client Request » [FC=03][Address][Quantity]
l

Server Processing -» X Address doesn't exist
)

Server Exception - [FC=83][ExCode=02]

Handling Exceptions in Client Code

Detection Algorithm

FUNCTION parseResponse(response)
// The function code is the first byte of the PDU
functionCode = response[@]

// Check if the most significant bit is set (value >= 128)
IF functionCode >= ©x80 THEN

// This is an exception response

originalFC = functionCode - 0x80

exceptionCode = response[1]

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 78 /190

// Raise an error or return a special exception object
THROW NEW ModbusException(originalFC, exceptionCode)

ELSE
// This is a normal response, process it accordingly
RETURN parseNormalResponse(functionCode, response)
END IF
END FUNCTION

Exception Handling Strategy

Level 1: Automatic Retry (for transient errors)

IF exceptionCode IS 0x06 THEN // Server Device Busy
// Wait for a short period and then retry the request
SLEEP(100 milliseconds)
RETURN retry(request)

END IF

Level 2: User Notification (for configuration errors)

IF exceptionCode IS 0x02 THEN // Illegal Data Address

// Inform the user that the request is invalid

SHOW_ERROR("The requested address does not exist. Please check the device's memory map.")
END IF

Level 3: Fatal Error (for unrecoverable errors)

IF exceptionCode IS 0x04 THEN // Server Device Failure
// Notify the user of a critical hardware problem and stop communication
SHOW_ERROR("The device reported a hardware failure. Please contact support.")
disconnectDevice()

END IF

Exception Code Details

Exception 01 - lllegal Function
When: Function code not supported or not allowed in current state
Examples:

e Device doesn't implement FC20 (Read File Record)
e Device in wrong mode for this function

e Function only available in newer firmware

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 79/190

See: Exception 01 Details

Exception 02 - lllegal Data Address

When: The data address is not valid for this device
Examples:

e Reading address 1000 when device only has 0-999
e Start address exists but start + quantity exceeds range

e Address not implemented (sparse memory map)

See: Exception 02 Details

Exception 03 - lllegal Data Value

When: Value in the query data field is not allowable
Examples:

e Quantity = 0 (must be > 1)
e Quantity > maximum (e.g., 126 registers for FC03)
e |nvalid sub-function code

e Malformed message structure

Important: NOT used for out-of-range data values in writes. Protocol is unaware of data semantics.

See: Exception 03 Details

Exception 04 - Server Device Failure

When: Unrecoverable error occurred while processing
Examples:

e Internal hardware fault
e Memory corruption detected
e Watchdog timer reset

e Critical system error

See: Exception 04 Details

Exception 05 - Acknowledge

When: Long-duration operation has been accepted
Examples:

® Program download initiated
e Configuration write started

e Use FCO8 sub-function or another polling mechanism to check completion

Not an error: Server is processing, client should poll for completion

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 80/ 190

See: Exception 05 Details

Exception 06 - Server Device Busy

When: Device is busy processing a long-duration command
Examples:

e Still processing previous program command

e Performing internal calibration

e Busy with higher-priority task
Action: Retry request after delay

See: Exception 06 Details

Exception 08 - Memory Parity Error

When: Extended file area parity check failed
Examples:

e Used with FC20/FC21 (Read/Write File Record)
e Reference type 6 (extended file)

® Memory corruption detected

Action: Can retry, but device may need service

See: Exception 08 Details

Exception OA - Gateway Path Unavailable

When: Gateway cannot allocate communication path
Examples:

e Gateway misconfigured
e Gateway communication channels full

e No routing from input port to output port

Only for gateways

See: Exception OA Details

Exception OB - Gateway Target Device Failed to Respond

When: Target device didn't respond to gateway
Examples:

e Target device offline
e Target device powered off
e Communication link failure

* Wrong address

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 81/190

Only for gateways

See: Exception OB Details

Best Practices

Always Check for Exceptions

Don't assume success:

// Bad: Assumes the request will always succeed
response = sendModbusRequest(request)
value = response.registers[0]

// Good: Wraps the request in a try-catch block
TRY
response = sendModbusRequest(request)
value = response.registers[0]
CATCH ModbusException AS e
handleException(e)
END TRY

Log Exceptions for Debugging

FUNCTION handleException(e)
LOG "Modbus Exception Occurred:"

LOG " Original Function: + e.functionCode

LOG " Exception Code: + e.exceptionCode

LOG " Description: + getExceptionDescription(e.exceptionCode)

// ... take appropriate action based on the exception ...
END FUNCTION

Implement Appropriate Retry Logic

Retry for transient errors:

e Exception 06 (Server Busy) - Retry after delay

* No response (timeout) - Retry with backoff

Don't retry for permanent errors:

e Exception 02 (lllegal Address) - Fix configuration

e Exception 01 (lllegal Function) - Use different function

Provide User-Friendly Messages

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 82/190

Instead of:
I "Exception 02 received"
Provide:

I "Address 40500 doesn't exist. This device only supports addresses 40007-40700. Check the device manual for valid addresses."

Using Chipkin Modbus Explorer
Chipkin Modbus Explorer automatically:

1. Detects exceptions in responses
2. Decodes exception codes with descriptions
3. Logs exceptions for troubleshooting

4. Displays human-readable messages

Example Display:

X Exception Response

Function Code: ©3 (Read Holding Registers)
Exception Code: 02 (Illegal Data Address)

Description:
The data address received in the query is not an allowable
address for the device. The address may not exist, or the

combination of address + quantity may exceed the available range.

Suggestion:
Check the device memory map to verify address 1185 exists.

Related Topics
Individual Exception Details:

e Exception 01 - lllegal Function

e Exception 02 - lllegal Data Address

® Exception 03 - lllegal Data Value

e Exception 04 - Server Device Failure

e Exception 05 - Acknowledge

e Exception 06 - Server Device Busy

e Exception 08 - Memory Parity Error

® Exception OA - Gateway Path Unavailable

e Exception OB - Gateway Target Failed

Protocol Basics:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 83 /190

e Message Structure - How exceptions fit into PDUs
e Data Model - Understanding data organization

e Addressing - Avoiding address errors

Troubleshooting:

e Troubleshooting Guide - Solving common problems

e Glossary - Exception Code - Terminology

Function References:

e FCO3 - Read Holding Registers

e All Function Codes

Exception 01 - lllegal Function

Exception Code: 0x01
Name: ILLEGAL FUNCTION

Severity: .1, Configuration Error - Request must be corrected

What It Means

The function code received in the query is not an action that the server can perform. This is a fundamental configuration mismatch

between the client and the server.
This exception indicates that:

e The server does not support the requested function code at all.
e The server is not in a state where it can execute the function.

e The client is attempting to write to a read-only data block.

When It Occurs

Scenario 1: Function Not Supported

The most common cause is that the device simply does not implement the requested function code.

Example:

Device is a simple sensor that only supports:
- FCO3 (Read Holding Registers)
- FCO4 (Read Input Registers)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 84 /190

Client attempts to write a register:
Request: [06][00 ©1][00 7B]

FC=06 Addr=1 Value=123
Response: [86][01]

ErrFC ExCode

Why: The device is read-only and does not implement FCO6 (Write Single Register).

Scenario 2: Device in Wrong State
Some devices only allow certain functions in specific modes (e.g., "configuration mode" vs. "run mode").

Example:

A programmable logic controller (PLC) might only allow FC16 (Write Multiple Registers) when it is in
"Program" or "Stop" mode.

If the PLC is in "Run" mode:
Request: [10][...data...]
FC=16

Response: [90][01]
ErrFC ExCode

Why: The function is illegal in the current state.

Scenario 3: Writing to a Read-Only Address Block
Some devices use Exception 01 to reject write attempts to an entire table that is considered read-only.

Example:

A client attempts to write to an Input Register (address 30005). Input registers are always read-only.

Request: [06][00 04][12 34]

FC=06 Addr=4 (for 30005)
Response: [86][01]

ErrFC ExCode

Why: The device rejects any write attempt to the Input Register table with "Illegal Function".

Tip — Device Behavior Varies

Other devices might return Exception 02 - Illegal Data Address in this scenario. The Modbus standard allows for either
interpretation.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 85/ 190

Function Codes That Can Return Exception 01

Any function code can theoretically return this exception if it's not supported by the server.

Complete Example

FC06 Write Single Register - Not Supported

Modbus TCP Request:

[00 6A][00 00][00 ©6][01] [@6][00 ©1][00 7B]
Trans Proto Len Unit FC Addr Value

Transaction ID: 10

Function: @6 (Write Single Register)
Address: 1 (public 40002)

Value: 123

Assumption: The server device is a simple sensor and does not support writing.

Modbus TCP Exception Response:

[00 OA][00 @O][00 03][01] [86][01]
Trans Proto Len Unit ErrFC ExCode

Transaction ID: 10 (matches request)
Exception Function: 0x86 (0x06 + ©x80)
Exception Code: 0x01 (Illegal Function)

Meaning: The server does not know how to perform Function Code 06.

Troubleshooting Steps

Step 1: Verify Function Code Support

Check device documentation:

e Look for a "Supported Function Codes" table in the manual.

e Confirm that the function code you are using is listed.

Example from device manual:

01 Read Coils Yes

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 86/ 190

03 Read Holding Registers Yes
04 Read Input Registers Yes
06 Write Single Register No

16 Write Multiple Registers No

Step 2: Check the Data Table

Are you reading/writing to the correct block?

e Coils (0xxxx): Read with FCO1, Write with FCO5/FC15.
e Discrete Inputs (1xxxx): Read with FC02. Read-only.
¢ Input Registers (3xxxx): Read with FC04. Read-only.
¢ Holding Registers (4xxxx): Read with FC03, Write with FC06/FC16.

An attempt to write to a read-only block (Discrete Inputs or Input Registers) can cause this exception.

Step 3: Check Device State

e |f the device has different operating modes, ensure it is in the correct mode to accept your request.

e This may require physical interaction with the device or a separate command to change its state.

Prevention Strategies

Client-Side Capability Profile

Before communicating, configure the client with the known capabilities of the server.

"device": "Simple Sensor XYZ",
"supportedFunctions": [1, 2, 3, 4]

FUNCTION sendRequest(functionCode, payload)
// Get the list of functions supported by the target device
supported = getDeviceProfile().supportedFunctions

// Check if the requested function is in the list
IF functionCode NOT IN supported THEN

// Abort the request before it's even sent

THROW ERROR "Function " + functionCode + " is not supported by this device."
END IF

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 87 /190

// If supported, proceed with sending the request

70 ooo
END FUNCTION

Use Discovery Tools

Some advanced Modbus clients or discovery tools can query a device (e.g., using FC43 - Read Device Identification) to learn about

its capabilities, though support for this is not universal.

Related Topics
Other Exceptions:

® Exception 02 - lllegal Data Address
e Exception 03 - lllegal Data Value

e Exceptions Overview - All exception codes

Data Model:

e Data Model - The four data tables.

Exception 02 - lllegal Data Address

Exception Code: 0x02
Name: ILLEGAL DATA ADDRESS

Severity: .1, Configuration Error - Request must be corrected

What It Means
The data address received in the query is not an allowable address for the server device.
This exception indicates that:

e The specified address doesn't exist in the device
e The address exists but is not implemented

e The combination of starting address + quantity exceeds the available range

When It Occurs

Scenario 1: Address Doesn't Exist

Example:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 88/190

Chipkin Modbus Explorer (CAS-1000-20)

Device implements registers: ©0-99 (public 40001-40100)
Request asks for: Register 100 (public 40101)
Result: Exception 02

Request: [03][00 64][00 01]
FC Addr=100 Qty=1
Response: [83][02]
ErrFC ExCode

Scenario 2: Range Exceeds Available Memory

Example:

Device implements registers: ©0-99 (public 40001-40100)
Request asks for: Start at 96, read 5 registers (96-100)
Result: Exception 02

Why: Registers 96, 97, 98, 99 exist (4 registers)
Register 100 does NOT exist
Therefore: Cannot read 5 registers

Request: [03][00 60][00 05]
FC Addr=96 Qty=5
Response: [83][02]

Correct request:

Request: [©3][00 60][00 04]
FC Addr=96 Qty=4
Response: [@3][@8][data for 4 registers...]
Vv Success - reads registers 96-99 only

Scenario 3: Sparse Memory Map

Many devices have non-contiguous address ranges:

Example Device:

Implemented addresses:
0-49: Process values (40001-40050)
200-249: Configuration (40201-40250)

Unimplemented addresses:
50-199: NOT IMPLEMENTED
250+: NOT IMPLEMENTED

Valid request:

Last Updated: January 22, 2026

Page 89/ 190

Read 40001: [03][00 08][00 01] - v OK
Read 40050: [03][00 31][@0 01] » v OK
Read 40201: [03][00 C8][00 01] » v OK

v

v

Invalid request:

Read 40100: [03][00 63][00 01] » X Exception 02
(Address 99 not implemented)

Scenario 4: Write to Read-Only Address

Some devices return Exception 02 when attempting to write to read-only addresses:

Example:

Input Registers are read-only (FC04)
Attempt to write: [06][00 10][00 ©5]
FCO6 Addr=16 Value=5

Some devices return: [86][02]
AAAN Exception 02

Others return: [86][01] (Exception ©1 - Illegal Function)

Tip — Device Behavior Varies

Different manufacturers handle read-only write attempts differently. Some use Exception 01, others use Exception 02. Check
device documentation.

Function Codes That Can Return Exception 02
Any function that specifies addresses:

e FCO1 - Read Coils

e FCO02 - Read Discrete Inputs

e FCO3 - Read Holding Registers (most common)
e FCO04 - Read Input Registers

e FCO5 - Write Single Coil

e FCO06 - Write Single Register

e FC15 - Write Multiple Coils

e FC16 - Write Multiple Registers

e FC23 - Read/Write Multiple Registers

Complete Example

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 90/ 190

FC03 Read Holding Registers - Invalid Address

Modbus TCP Request:

[00 05][00 @O][00 06][01] [03][04 Al][00 01]
Trans Proto Len Unit FC Addr Qty

Transaction ID: 5

Function: @3 (Read Holding Registers)
Address: ©x04A1 (1185 decimal - public 41186)
Quantity: 1 register

Assumption: Device only has registers 0-999

Modbus TCP Exception Response:

[00 65][00 00][00 ©3][01] [83][02]
Trans Proto Len Unit ErrFC ExCode

Transaction ID: 5 (matches request)
Exception Function: 0x83 (0x03 + 0x80)
Exception Code: ©x02 (Illegal Data Address)

Meaning: Address 1185 doesn't exist

Modbus RTU Request:

[01][@3][04 A1][08 ©1][XX XX]
Unit FC Addr Qty CRC

Modbus RTU Exception Response:

[01][83][02][XX XX]
Unit ErrFC ExCode CRC

Troubleshooting Steps

Step 1: Verify Address Exists

Check device documentation (memory map or register map):

Example from device manual:

Holding Registers:
40001-40100: Process Data

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 91/190

40201-40250: Configuration
40501-40510: Diagnostic Counters

Valid addresses: 0-99, 200-249, 500-509
Invalid examples: 100, 150, 300, 511

Step 2: Check Address Conversion

Verify public ~ protocol conversion:

Want to read: Holding Register 40108
Conversion:
Public: 40108
Table: Holding Register (first digit '4")
Point: 108
Protocol: 108 - 1 = 107 (©x006B)

Correct request: [03][00 6B][00 01]
Wrong request: [03][00 6C][00 ©1] « Address 108 = register 40109

See: Addressing for conversion details

Step 3: Validate Range Calculation

For multi-register reads:

Want: Registers 40096-40100 (5 registers)

Calculation:
Start public: 40096
Start protocol: 96 - 1 = 95 (@x005F)
Quantity: 5

Reads: 95, 96, 97, 98, 99 (protocol)
Public: 40096, 40097, 40098, 40099, 40100 Vv

Request: [03][00 5F][00 05]

Common mistake:

Start: 40096 - Protocol 96 (WRONG - forgot -1)
Quantity: 5

Reads: 96, 97, 98, 99, 100
Public: 40097, 40098, 40099, 40100, 40101

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 92 /190

If device ends at 40100, address 40101 causes Exception 02

Step 4: Check for Sparse Memory Map
Test boundary addresses:

If getting Exception 02 unexpectedly:

1. Try reading first known address: 40001
Request: [03][00 00][00 01]

2. Try reading last known address: 40100
Request: [03][00 63][00 01]

3. Try addresses in between to find gaps

4. Document which addresses work and which don't

Step 5: Use Discovery Tools

Chipkin Modbus Explorer has Discovery feature:

1. Go to Discovery page

2. Select address range to scan

3. Click Start Discovery

4. Tool automatically finds implemented addresses

5. Generates memory map showing valid addresses

See: Discovery Guide

Prevention Strategies

Always Consult Device Documentation

Before implementation:

1. Obtain device manual or datasheet

2. Locate memory map or register map

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 93/190

3. Identify implemented address ranges
4. Note any gaps in addressing

5. Document findings

Validate Addresses Before Sending

Client-side validation:

FUNCTION validateReadRequest(functionCode, startAddress, quantity)
// Retrieve the known valid address ranges for the device
// based on the function code (e.g., holding registers vs. coils)
validRanges = getDeviceMemoryMap(functionCode)

// Iterate through every address in the requested block
FOR i FROM © TO quantity - 1

address = startAddress + i

// Check if the calculated address falls within any of the valid ranges
IF isAddressInRanges(address, validRanges) IS FALSE THEN
// If not, abort and report the error
THROW ERROR "Address " + address + " is not valid. Valid ranges
are: " + validRanges
END IF

END FOR

// If all addresses are valid, the request is safe to send
RETURN TRUE
END FUNCTION

Use Conservative Quantity Values

When in doubt, request fewer registers:

Uncertain if registers 40090-40100 all exist?

Option 1 (risky): Read 40090-40100 (11 registers)
If 40100 doesn't exist -» Exception 02

Option 2 (safe): Read 40090-40095 (6 registers)
Then read 40096-40100 (5 registers) separately

If second request fails, only lose 5 registers worth of attempt

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 94 /190

Document Sparse Maps

Create configuration files:

{
"device": "Power Meter Model X",
"holdingRegisters": {
"process": { "start": 0, "end": 49 },
"config": { "start": 200, "end": 249 },
"diagnostic": { "start": 500, "end": 509 }
¥
¥

Handling in Application Code

Detect and Report

TRY
// Attempt to read the requested registers

response = readHoldingRegisters(address, quantity)

// If successful, process the data
processData(response)

CATCH ModbusException AS e
// Check if the specific error is "Illegal Data Address"
IF e.exceptionCode IS ©x02 THEN
// Provide a clear, user-friendly error message

LOG ERROR "The requested address (" + address + ") is not valid for this device."
LOG INFO "Please check the device's documentation for its memory map."

// Optionally, send structured error data to a monitoring system
REPORT_ERROR(

type: "MODBUS_ILLEGAL_ADDRESS",
details: {

"device": deviceInfo,
"address": address,

"quantity": quantity

ELSE

// If it's a different Modbus exception, re-throw it
THROW e

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 95/ 190

END IF
END TRY

Automatic Discovery Fallback

FUNCTION readWithFallback(address, quantity)
TRY
// First, try to read the entire block as requested
RETURN readHoldingRegisters(address, quantity)

CATCH ModbusException AS e
// If it fails with "Illegal Data Address" and we were reading more than one point
IF e.exceptionCode IS 0x02 AND quantity > 1 THEN
LOG WARN "Address range is invalid. Attempting to read each address individually."

results = NEW LIST

// Loop through each requested address one by one
FOR i FROM © TO quantity - 1
currentAddress = address + 1
TRY
// Read a single register
value = readHoldingRegisters(currentAddress, 1)
ADD value TO results
CATCH
// If a single read fails, mark it as non-existent (null)
ADD NULL TO results
END TRY
END FOR

// Return the list of results, which may contain nulls for invalid addresses
RETURN results

ELSE
// For other errors or single-point reads, re-throw the original exception
THROW e

END IF

END TRY
END FUNCTION

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 96/ 190

Common Causes by Function Code

FCO3 / FC04 (Read Registers)

e Address doesn't exist - Most common cause
* Quantity too large - Address + quantity > max address

e Sparse memory map - Gap in middle of requested range

FCO5 / FC06 (Write Single)

e Read-only address - Attempting to write to input table
e Address not writable - Device-specific read-only addresses

e Address doesn't exist - Invalid address

FC15 / FC16 (Write Multiple)

e Same as read - Address or range invalid

e Additional: Partially valid range (some addresses exist, others don't)

Related Topics
Understanding Addresses:

e Addressing - Public vs protocol addressing, off-by-one

e Data Model - The four tables and their ranges

Other Exceptions:

e Exception 01 - lllegal Function
® Exception 03 - lllegal Data Value

e Exceptions Overview - All exception codes

Function Code Details:

® FCO3 - Read Holding Registers
e FCO6 - Write Single Register

e All Function Codes

Tools and Features:

e Discovery - Automatically find valid addresses
e Modbus Client - Testing addresses

e Troubleshooting - Solving communication problems

Reference:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 97 /190

® Glossary - Address

® Glossary - Exception Code

Exception 03 - lllegal Data Value

Exception Code: 0x03
Name: ILLEGAL DATA VALUE

Severity: .1, Configuration Error - Request must be corrected

What It Means

A value contained in the request's data field is invalid. This is different from an illegal address (Exception 02); it refers to the values
being sent, such as quantity, byte counts, or the data to be written.

This exception indicates that:

e A quantity or count field is outside its valid range (e.g., too large or zero).
e A byte count does not match the expected value based on the quantity.

e A value to be written to a register is invalid for that specific register's function (application-level validation).

When It Occurs

Scenario 1: Invalid Quantity

Many function codes have limits on the number of points that can be read or written.

Example: FCO3 (Read Holding Registers)

Valid quantity range: 1 to 125
Client requests 200 registers.

Request: [©3][00 ©0][00 C8]
FC Addr=0 Qty=200
Response: [83][03]
ErrFC ExCode

Why: The quantity (200) exceeds the maximum of 125 for this function.

Scenario 2: Mismatched Byte Count

For functions that write data, the Byte Count field must correctly correspond to the Quantity field.

Example: FC16 (Write Multiple Registers)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 98 /190

Rule: Byte Count = Quantity of Registers x 2

Client wants to write 2 registers, but sends an incorrect byte count.
Request: [10][00 ©0][00 ©2][03][...data...]

FC Addr=0 Qty=2 ByteCt=3 (WRONG!)
Response: [90][03]

ErrFC ExCode

Why: For 2 registers, the byte count must be 4 (2 x 2).

Correct Request:

Request: [10][00 00][00 ©2][04][...4 bytes of data...]
FC Addr=0 Qty=2 ByteCt=4 (CORRECT)
Response: [10][00 ©0][00 02]
V' Success

Scenario 3: Invalid Application-Level Value

A server can perform its own validation on the data it receives. Even if the request is structurally correct, the value itself might be
unacceptable.

Example: Writing to an Enumerated Register

A device has a register (40100) that controls its operating mode.
Valid values:

- 0 = Off
-1 =0n
- 2 = Standby

Client attempts to write an unsupported value.
Request: [06][00 63][00 05]

FC=06 Addr=99 Value=5
Response: [86][03]

ErrFC ExCode

Why: The value '5' is not a valid operating mode for this register.

Scenario 4: Invalid Sub-function

For functions that use sub-function codes, like FCO8 - Diagnostics, an unsupported sub-function will trigger Exception 03.

Example: FC08 (Diagnostics)

Device supports sub-functions @ (Return Query Data) and 1 (Restart).

Client requests a non-existent sub-function.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 99/ 190

Request: [©8][00 FF][DE AD]

FC SubFunc=255 Data
Response: [88][03]

ErrFC ExCode

Why: Sub-function 255 is not implemented by the server.

Function Codes That Can Return Exception 03
Any function with data fields that have constraints can return this exception.

e FCO3 / FCO4: Invalid quantity.

e FCO6: Invalid register value (application-level).

e FCO08: Invalid sub-function code.

e FC15 / FC16: Invalid quantity or mismatched byte count.

e FC23:Invalid quantity or mismatched byte count for either read or write part.

Complete Example

FC16 Write Multiple Registers - Mismatched Byte Count

Modbus TCP Request:

[00 @B][00 00][00 08][01] [10][00 ©1][00 ©2][03][12 34]
Trans Proto Len Unit FC Addr Qty ByteCt Data

Transaction ID: 11

Function: 16 (Write Multiple Registers)

Address: 1

Quantity: 2 registers

Byte Count: 3 (This is incorrect for 2 registers)

Data: 0x1234 (This part is irrelevant as the byte count is checked first)

Modbus TCP Exception Response:

[00 @B][00 00][00 ©3][01] [90][03]

Trans Proto Len Unit ErrFC ExCode

Transaction ID: 11 (matches request)
Exception Function: 0x90 (0x10 + ©x890)
Exception Code: ©x03 (Illegal Data Value)

Meaning: The byte count of 3 is invalid for a request to write 2 registers.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 100/ 190

Troubleshooting Steps

Step 1: Check Quantity Limits
e Consult the documentation for the specific function code being used.
e Ensure the Quantity field is within the allowed min/max range.

o Reads (FC01-04): 1-2000 (coils/inputs), 1-125 (registers)
© Writes (FC15-16): 1-1968 (coils), 1-123 (registers)

Step 2: Verify Byte Count Calculation

e For write functions, double-check the formula for the byte count.

o FC15 (Coils): Byte Count = ceil(Quantity of Coils / 8)

o FC16 (Registers): Byte Count = Quantity of Registers x 2

Step 3: Validate Application-Level Data

e If quantities and byte counts are correct, the issue is likely the data itself.
e Check the device manual for the valid range or accepted values for the target register.
® For enumerated registers, ensure you are using one of the listed values.

e For numerical registers, check for min/max limits (e.g., a setpoint might be limited to 0-1000).

Prevention Strategies

Client-Side Validation

Implement checks in the client application before sending a request.

FUNCTION createWriteMultipleRegistersRequest(startAddress, values)
quantity = length(values)

// Check quantity limit for FC16
IF quantity < 1 OR quantity > 123 THEN

THROW ERROR "Invalid quantity for FC16. Must be between 1 and 123."
END IF

// Calculate the correct byte count
byteCount = quantity * 2

// Validate each value before adding it to the payload
FOR each value IN values

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 101/ 190

// Get the valid range for the target register from a device profile
validRange = getRegisterProfile(startAddress).validRange
IF value < validRange.min OR value > validRange.max THEN

THROW ERROR "Value " + value + " is out of range for register "
END IF
startAddress = startAddress + 1

END FOR

// If all checks pass, build and send the request

40 ooo
END FUNCTION

Use High-Level Libraries

+ startAddress

Use Modbus libraries that handle the calculation of quantities and byte counts automatically. This eliminates a common source of

errors.

Related Topics
Other Exceptions:

e Exception 01 - lllegal Function
e Exception 02 - lllegal Data Address

e Exceptions Overview - All exception codes

Function Code Details:

e FC16 - Write Multiple Registers

e FC08 - Diagnostics

Exception 04 - Server Device Failure

Exception Code: 0x04
Name: SERVER DEVICE FAILURE

Severity: # Critical Error - May require device intervention

What It Means

The server encountered an unrecoverable error while attempting to perform the action requested in the query. This is a catch-all

exception for internal problems within the server device that are not related to the format of the request itself.

This exception indicates a problem with the server device, such as:

e A hardware fault (e.g., memory parity error, /O failure).

e A firmware crash or internal software error.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 102/ 190

e The device is stuck in an unrecoverable state.

This is one of the most serious exceptions, as it implies the request was valid, but the device was physically unable to complete it.

When It Occurs

This exception is not tied to specific request values but rather to the internal state of the server.

Scenario 1: Hardware Fault
A common cause is a failure in the device's non-volatile memory or I/O subsystem.

Example:

The server attempts to write these to its flash memory, but the write operation fails due to a
hardware fault.

Request: [10][01 @0][00 OA][14][...data...]
FC Addr=256 Qty=10 ByteCt=20
Response: [90][04]
ErrFC ExCode

Why: The server's flash memory is corrupted or has failed, preventing it from saving the new
configuration. The request was valid, but the hardware could not execute it.

Scenario 2: Firmware Error

An internal bug or unexpected state in the server's firmware can lead to this exception.

Example:

A client requests a diagnostic report using FC@8. The server's firmware enters an infinite loop or
encounters a null pointer exception while trying to gather the diagnostic data. After a timeout, it
returns a failure exception.

Request: [08][00 ©2][00 00]
FC Sub-func=2
Response: [88][04]
ErrFC ExCode

Why: A software bug prevented the device from successfully completing an otherwise valid request.

Function Codes That Can Return Exception 04

A client sends a valid FC16 (Write Multiple Registers) request to save new configuration parameters.

Any function code can return this exception. It is not specific to any particular operation but rather reflects the overall health of the

server device.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 103/ 190

Complete Example

FC03 Read Holding Registers - Device Failure

Modbus TCP Request:

[00 6C][00 00][00 06][01] [03][00 ©0][00 01]
Trans Proto Len Unit FC Addr Qty

Transaction ID: 12

Function: @3 (Read Holding Registers)
Address: @

Quantity: 1

Modbus TCP Exception Response:

[60 6C][00 00][00 ©3][01] [83][04]
Trans Proto Len Unit ErrFC ExCode

Transaction ID: 12 (matches request)
Exception Function: 0x83 (0x03 + 0x80)
Exception Code: ©x04 (Server Device Failure)

Troubleshooting Steps

Troubleshooting this exception is difficult from the client's perspective because the problem lies within the server.

Step 1: Retry the Request

e Send the exact same request again after a short delay (e.g., 1-5 seconds).
e |f the error was transient, the subsequent request might succeed.

e If the error persists after several retries, it indicates a hard fault.
Step 2: Check Device Status Indicators
e Look at the physical device for any fault LEDs (e.g., red or amber lights).

e Consult the device manual to interpret the meaning of any status lights.

Step 3: Power Cycle the Device

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Assumption: The server's I/0 board that reads the sensor connected to this register has failed.

Meaning: The server could not read the register due to an internal hardware or software fault.

Page 104 / 190

e A hard reset (powering the device off and on again) can sometimes clear internal faults.

e Caution: This may result in the loss of non-persistent data or configuration.

Step 4: Query Basic Information

e Try to read a simple, static value, such as the vendor name via FC43 - Read Device Identification.

e If even the most basic requests fail with Exception 04, the device is likely in a critical failure state.

Step 5: Contact Manufacturer

e |f the device consistently returns Exception 04 and cannot be recovered via a power cycle, it likely requires repair or
replacement.

e Provide the manufacturer with the context of the failure (what command was being sent, any physical status indicators).

Handling in Application Code

Retry Logic

Implement a retry mechanism with a limited number of attempts.

FUNCTION readWithRetry(address, quantity, maxRetries = 3)
retries = @
WHILE retries < maxRetries
TRY
// Attempt the read operation
RETURN readHoldingRegisters(address, quantity)

CATCH ModbusException AS e
// Check for Server Device Failure
IF e.exceptionCode IS ©x04 THEN
retries = retries + 1
LOG WARN "Server device failure detected. Retry " + retries +
"/" + maxRetries
WAIT 2 seconds // Wait before retrying
ELSE
// For any other exception, fail immediately
THROW e
END IF
END TRY

END WHILE

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 105/ 190

// If all retries fail, throw a final exception
THROW ERROR "Server device failed to respond after " + maxRetries + " retries.”
END FUNCTION

Alerting and Monitoring

Since this is a critical error, the client application should generate a high-priority alert.

// Inside the catch block for Exception 04
LOG CRITICAL "Unrecoverable error reported by Modbus server at address " + serverAddress
CREATE_HIGH_PRIORITY_ALARM(

type: "MODBUS_SERVER_FAILURE",

message: "Server " + serverAddress +
details: {

"request": lastRequestSent

reported Exception 04: Server Device Failure.",

Related Topics
Other Exceptions:

e Exception 05 - Acknowledge - For long-duration commands.
e Exception 06 - Server Device Busy - A recoverable "busy" state.

e Exceptions Overview - All exception codes.

Exception 05 - Acknowledge

Exception Code: 0x05
Name: ACKNOWLEDGE

Severity: informational - Part of a normal workflow for long-running commands

What It Means

The server has accepted the request and has started processing it, but the operation will take a significant amount of time to
complete. This is not an error. It is a special acknowledgement that prevents the client from timing out while waiting for a long-
duration task to finish.

The server sends this exception to say: "I got your request and it's valid. Come back later to check on the progress.”

When It Occurs

This exception is specifically used for commands that take a long time, such as:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 106 / 190

e Programming a device.
e Erasing or writing to large blocks of flash memory.

e Running a complex self-test or calibration routine.

Example: Device Programming

A client sends a command to a PLC to download a new program. This operation might take 30 seconds.

1. Client sends "Program Device" command (e.g., using a proprietary function code).
Request: [41][...programming data...]

2. Server receives the request, validates it, and begins the programming sequence. It immediately
responds with Exception ©5.
Response: [C1][05]
ErrFC ExCode
This tells the client that the command was accepted.

3. The client now knows not to expect an immediate success response. Instead, it should start
polling the server's status.

4. Client periodically sends FC1l (Get Comm Event Counter) to check if the server is still busy.
Request: [0B]
Response (while busy): [8B][FF FF][...event count...]
Status=Busy

5. After 30 seconds, the server finishes programming. The next time the client polls with FC11,
the server indicates it is ready.
Response (when done): [8B][00 00][...new event count...]
Status=Ready

6. The client can now resume normal communication.

How to Handle It

This exception requires a specific workflow in the client application.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 107 / 190

Client Workflow

—_

. Send Long-Duration Command: The client sends the initial request that is expected to take a long time.

2. Receive Exception 05: The client's Modbus stack should be configured to treat Exception 05 not as an error, but as a
trigger for a polling loop.

3. Enter Polling State: Upon receiving Exception 05, the client should:

o Stop waiting for a final response to the original command.

o Start a periodic polling timer (e.g., every 1-2 seconds).

4. Poll for Status: In the polling loop, the client should send a status-checking command. The standard function for this is
FC11 - Get Comm Event Counter.

o The Status field inthe FC11 response will be ©xFFFF (Busy) while the operation is in progress.

5. Exit Polling State: The client continues polling until the Status field in the FC11 response is ©x0000 (Ready).

6. Resume Normal Operation: Once the server is ready, the client can continue with other Modbus transactions.

Pseudocode for Client Logic

FUNCTION executeLongCommand(command)
TRY

// Send the initial command
sendModbusRequest (command)

CATCH ModbusException AS e
// Check for the "Acknowledge" exception
IF e.exceptionCode IS 0x05 THEN

LOG INFO "Server acknowledged long-running command. Entering polling mode."

// Start polling until the server is no longer busy
WHILE isServerBusy()

WAIT 2 seconds
END WHILE

LOG INFO "Server has completed the command."
RETURN " ; SUCCESS"

ELSE
// If it's a different exception, treat it as an error
THROW e

END IF

END TRY

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 108/ 190

FUNCTION isServerBusy()
// Use FC11l to get the server's status
response = readCommEventCounter() // Sends FCl1

// The status is OxFFFF if busy, 0x0000 if ready
RETURN response.status IS OxFFFF
END FUNCTION

Related Topics
Other Exceptions:

e Exception 04 - Server Device Failure - An unrecoverable error.
e Exception 06 - Server Device Busy - A temporary busy state where the server asks the client to retry the same request later.

e Exceptions Overview - All exception codes.

Associated Function Codes:

e FC11 - Get Comm Event Counter - The standard way to poll for status after receiving Exception 05.

Exception 06 - Server Device Busy

Exception Code: 0x06
Name: SERVER DEVICE BUSY

Severity: Informational - Client should retry later

What It Means

The server is busy processing a long-duration program command. The server returns this exception to indicate that it cannot handle
a new request at this moment. The client should retry the same request again after a short delay.

This exception is closely related to Exception 05 - Acknowledge, but they occur at different stages of a long-duration command

sequence.

When It Occurs

This exception occurs when a client sends a request to a server that is already in the middle of executing a long-running task
initiated by a previous command.

Typical Workflow

1. Client A sends a long-duration command (e.g., "Program Device").

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 109/ 190

2. Server accepts the command and responds to Client A with Exception 05 - Acknowledge. The server is now in a "busy"

state.

3. Client B (or Client A) sends a new request (e.g., a simple FCO3 - Read Holding Registers) while the server is still

busy programming.

4. Server rejects the new request by responding with Exception 06 - Server Device Busy.
This tells the requesting client: "l cannot process your request right now because | am busy with something else. Please ask again
later."

Example:

// Step 1 & 2: A long command is already running
Client A -> [Program Command] -> Server
Server -> [Exception 05] -> Client A

// The Server is now busy for the next 30 seconds.

// Step 3 & 4: A new request arrives while the server is busy
Client B -> [FCO3 Request] -> Server
Server -> [83][06] -> Client B (FCO3 + ©x80, Exception 06)

How to Handle It

The client's response to Exception 06 should be simple: wait and retry.

Client Workflow

1. Send Request: The client sends any Modbus request.

2. Receive Exception 06: The client receives the "Server Device Busy" exception.

3. Wait: The client should wait for a short, predefined period (e.g., 500ms to 2 seconds).
4. Retry: The client should send the exact same request again.

5. Repeat: Continue this wait-and-retry loop until the request is successful or a maximum number of retries is reached.

Pseudocode for Client Logic

FUNCTION sendRequestWithBusyHandling(request, maxRetries = 10)
retries = @
WHILE retries < maxRetries
TRY
// Attempt to send the request
response = sendModbusRequest(request)

// If it succeeds, return the response

RETURN response

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 110/ 190

CATCH ModbusException AS e

IF e.exceptionCode IS ©x06 THEN

retries = retries + 1

retries + ")"
WAIT 1 second
ELSE

THROW e
END IF
END TRY

END WHILE

// If all retries fail, throw a final timeout error

END FUNCTION

Difference Between Exception 05 and 06

// For any other exception, fail immediately

// Check if the specific error is "Server Device Busy"

LOG INFO "Server is busy. Retrying in 1 second... (Attempt " +

THROW ERROR "Request failed after " + maxRetries + " retries. Server remained busy."

These two exceptions can be confusing, but they serve different purposes in the same overall process.

Exception 05 (Acknowledge) Exception 06 (Server Device Busy)

"l cannot accept your new command because |

"I have accepted your long-running command and

Meaning o
am starting it now."
Start polling for stat .g., with FC11). D t d
Client Action a po. ing for status (e.g., wi). Do not resen
the original command.
Who . A .
. The client that initiated the long-running command.
Receives It
You order a custom-made pizza and are told, "It will
Analogy

be ready in 20 minutes."

Related Topics

Other Exceptions:

am already busy."

Wait and retry the same command later.

Any client that sends a request while the server is

busy.

You call a restaurant, and the line is busy, so you

hang up and call again.

e Exception 05 - Acknowledge - The initial response to a long-duration command.

e Exception 04 - Server Device Failure - A critical, unrecoverable error.

e Exceptions Overview - All exception codes.

Associated Function Codes:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 111 /190

e FC11 - Get Comm Event Counter - Used to poll for status after an "Acknowledge" response.

Exception 07 - Negative Acknowledge

Exception Code: 0x07
Name: NEGATIVE ACKNOWLEDGE

Severity: .1, Warning - Command rejected

What It Means

This exception is specialized for programming commands. It means the server has received a request to perform a programming
function but cannot currently perform it. This is different from Exception 05 - Acknowledge, which indicates the command has been

accepted.

"Negative Acknowledge" means "l understand your request to program me, but | cannot do it right now."

When It Occurs

This exception is returned only in response to programming-related function codes. The reasons for rejection are device-specific but

can include:

e The device is not in the correct mode for programming.
* Arequired prerequisite step has not been completed.

e The programming request is invalid for reasons other than data value or address (which would be Exception 02 or 03).

Example:

A client sends a "Write Program” command to a device, but the device's memory is locked or write-

protected.

Request: [Program Command]
Response: [ErrFC][07]

Why: The server understood the command but rejected it because its memory is locked. The client must

first send an "Unlock Memory" command before retrying.

How to Handle It
The client's action depends on the specific device's programming protocol.

1. Consult Device Manual: The manual is essential to understand why a programming command would be rejected.

2. Check Prerequisites: The client may need to send one or more preliminary commands (e.g., "Enter Program Mode",

"Unlock Memory").

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 112/ 190

3. Correct and Retry: After performing the required prerequisite steps, the client can send the original programming

command again.

Related Topics

e Exception 05 - Acknowledge - When the programming command is accepted.

e Exceptions Overview - All exception codes.

Exception 08 - Memory Parity Error

Exception Code: 0x08
Name: MEMORY PARITY ERROR

Severity: # Critical Error - Potential hardware fault

What It Means

The server attempted to read data from its internal memory as part of processing the request, but it detected a memory parity error.
This indicates a hardware-level problem with the server's memory (RAM or ROM).

This is a more specific version of Exception 04 - Server Device Failure.

When It Occurs

This error happens when the server's hardware self-diagnostics detect data corruption.

Example:

A client sends a valid FCO3 request to read a holding register. The server's CPU attempts to fetch the
value from the specified memory address. The memory hardware reports a parity error, meaning the data
at that location is corrupt.

Request: [@©3][00 6A][00 01]
FC Addr=10 Qty=1
Response: [83][08]
ErrFC ExCode

Why: The server could not reliably read the data from its own memory to fulfill the request.

How to Handle It

From the client's perspective, this should be treated as a serious server fault.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 113 /190

1. Retry: The client should retry the request a few times. If the error was transient, it might succeed.
2. Log Critical Error: If the error persists, the client should log a critical alarm. This is not a client or configuration issue.

3. Device Intervention: The server device likely has a hardware fault. It may need to be power-cycled, reset to factory

defaults, or replaced.

Client Logic

TRY
// Send a read request
response = readHoldingRegisters(address, quantity)
CATCH ModbusException AS e
IF e.exceptionCode IS ©x08 THEN
// Log a high-priority alarm for operator intervention
LOG CRITICAL "Server at " + serverAddress + " reported Memory Parity Error."
// Optionally, attempt a limited number of retries before failing
END IF
END TRY

Related Topics

e Exception 04 - Server Device Failure - A more general server error.

e Exceptions Overview - All exception codes.

Exception 10 (0x0A) - Gateway Path Unavailable

Exception Code: 0x0A (10 decimal)
Name: GATEWAY PATH UNAVAILABLE

Severity: .1, Warning - Network/Gateway issue

What It Means

This exception is specific to Modbus gateways (e.g., Modbus TCP to Modbus RTU). It means the gateway received the request but
could not establish a communication path to the final target device on the downstream serial network.

This is not a problem with the end device itself, but rather with the gateway's ability to reach it.

When It Occurs
This typically happens in a Modbus TCP to RTU gateway scenario.

Example:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 114 / 190

Client (TCP) -> Gateway (TCP to RTU) -> End Device (RTU)

The client sends a valid request to the gateway, addressed to Unit ID 5 on the serial link.

Request: [MBAP Header Unit=5][FC@3 Request]

The gateway receives this, but its serial port is misconfigured, disconnected, or already busy
handling another request on a different network path. The gateway cannot forward the request to Unit
ID 5.

The gateway then responds to the client with Exception 10.

Response: [MBAP Header Unit=5][83][0A]
ErrFC ExCode

Common Causes:

e The gateway's serial port is not properly configured (baud rate, parity, etc.).
e The physical serial cable (e.g., RS-485) is disconnected from the gateway.
e The gateway is overloaded and has no available internal resources to handle the request.

e A misconfigured router or switch is preventing the gateway from accessing the required network segment.

How to Handle It

This is a network infrastructure problem.

1. Check Gateway Configuration: Verify that the gateway's network settings and serial port settings are correct.
2. Inspect Physical Connections: Ensure all network cables and serial lines are securely connected to the gateway.
3. Reduce Gateway Load: If the gateway is handling many requests, the client may need to slow down its polling rate.

4. Retry: The client should implement a retry mechanism with a delay, as the path may become available.

Difference Between Exception 10 and 11

. Problem
Exception .
Location
10 - Path Unavailable Gateway "I (the gateway) cannot even send the message to the end device."
11 - Target Failed to . "I (the gateway) sent the message, but the end device never
End Device
Respond answered."

Related Topics

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 115/ 190

e Exception 11 - Gateway Target Device Failed to Respond

e Exceptions Overview - All exception codes.

Exception 11 (Ox0B) - Gateway Target Device Failed to
Respond

Exception Code: 0xOB (11 decimal)
Name: GATEWAY TARGET DEVICE FAILED TO RESPOND

Severity: ,1, Warning - End device or network issue

What It Means

This exception is specific to Modbus gateways. It means the gateway successfully forwarded the request to the target device on the

downstream network (e.g., a serial RTU link), but the target device did not send a response back within the expected timeout period.

This indicates a problem with the end device or the network segment between the gateway and the end device, not with the

gateway itself.

When It Occurs
This is a very common error in Modbus TCP-to-RTU setups.

Example:

Client (TCP) -> Gateway (TCP to RTU) -> End Device (RTU, Unit ID 5)

1. The client sends a valid request to the gateway, addressed to Unit ID 5.
Request: [MBAP Header Unit=5][FC@3 Request]

2. The gateway receives the request and successfully transmits it onto the serial RTU network.

3. The gateway waits for a response from Unit ID 5, but nothing is received before its timeout

period expires.

4. The gateway gives up and sends Exception 11 back to the original client.
Response: [MBAP Header Unit=5][83][0B]
ErrFC ExCode

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 116 / 190

Common Causes:

e The end device with the specified Unit ID does not exist on the serial link.

e The end device is powered off or has failed.

e The end device's serial configuration (baud rate, parity) does not match the gateway's.
e The serial wiring is faulty (e.g., swapped A/B lines on RS-485).

e The end device is too slow to respond, and the gateway's timeout is too short.

How to Handle It
This error points to a problem "downstream” from the gateway.
1. Verify End Device:
o Ensure the device with the target Unit ID exists and is powered on.
o Check for any fault indicators on the device itself.
2. Check Serial Configuration:

o Confirm that the baud rate, parity, and stop bits match between the gateway and all devices on the serial link.

3. Inspect Serial Wiring:

o Check for loose connections or damage to the cable.

o For RS-485, ensure the A/B lines are connected correctly.
4. Adjust Gateway Timeout:

o If the end device is known to be slow, increase the "Slave Response Timeout" or similar setting in the gateway's
configuration.

5. Isolate the Device:

o If there are multiple devices on the serial link, disconnect all but the problematic one to see if communication can

be established. This helps rule out conflicts.

Difference Between Exception 10 and 11

. Problem
Exception .
Location
10 - Path Unavailable Gateway "l (the gateway) couldn't even send the message.”

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 117 / 190

11 - Target Failed to . "l (the gateway) sent the message, but the target device ignored
End Device
Respond me.

Related Topics

® Exception 10 - Gateway Path Unavailable

e Exceptions Overview - All exception codes.

FCO1 - Read Coils

Function Code: 0x01 (1 decimal)
Purpose: Reads the ON/OFF status of 1 to 2000 contiguous discrete outputs (coils) in a server device.

Use Case: Used to get the current state of digital outputs, such as relays, switches, or lamps.

Overview

FCO1 reads the status of coils, which are single-bit read/write values. Each coil can be either ON (1) or OFF (0).

See: Data Model - Coils

Request Format

PDU Structure:

I T T 1
| Function Code| Starting Address | Quantity of Coils]|
| exe1 | (2 bytes) | (2 bytes) |
|
I

| (1 byte) | |
L | |

Request Fields:

o Lo o oo

Function Code 1 byte 0x01 Fixed value
Starting Address 2 bytes 0x0000 - OxFFFF First coil to read (0-based)

Quantity of Coils 2 bytes 1-2000 Number of consecutive coils

Valid Quantity Range: 1 to 2000 coils (0x07D0)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 118/ 190

Response Format

PDU Structure:

I T T
| Function Code| Byte Count | Coil Status
| exe1 | (1 byte) | (N bytes)

| (1 byte) | |
L | |

Response Fields:

Function Code 1 byte 0x01 (echoed from request)
Byte Count 1 byte Number of data bytes to follow (ceil(Quantity / 8))
Coil Status N bytes Coil data packed into bytes

Bit Packing:

e Coils are packed into bytes, with the first coil at the least significant bit (LSB) of the first byte.

e If the quantity is not a multiple of 8, the remaining bits in the last byte are padded with zeros.

Example Packing (10 coils):

Byte 1: [Coil 8, Coil 7, Coil 6, Coil 5, Coil 4, Coil 3, Coil 2, Coil 1]

Byte 2: [o, o, o, o, o, @, Coil 10, Coil 9]
ANNNNNNNNNNANNNNNNNNNNNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(MSB) (LSB)

Complete Example

Example: Read 10 Coils

Scenario: Read 10 coils starting at public address 1 (protocol address 0).

Address Conversion:

Public Address: 1
Point Number: 1
Protocol Address: © (0x0000)

See: Addressing

Modbus TCP Request:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 119/ 190

Trans

Proto

Breakdown:

Function:
Start Address:
Quantity:

r—— MBAP Header
[00 01][00 00][00 @6][01] [01][00 ©0][00 OA]

Len

Modbus TCP Response:

ox0

Unit

1

PDU

FC Addr

0x0000 (Coil 1)
OX000A (10 coils)

Assume the following coil states:

e (Coils1,3,5, 8are ON

e Coils 2,4,6,7,9, 10 are OFF

Trans

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit

Proto

Breakdown:

(4]
1
2
3
4
5
6
7

Function:

Byte Count:
Data Byte 1:
Data Byte 2:

(Coil
(Coil
(Coil
(Coil
(Coil
(Coil
(Coil
(Coil

r—— MBAP Header
[00 01][00 00][00 ©5][01] [0©1][02][85][01]

Len

Qty=10

ox0

0x02 (ceil(10 / 8)

Unit

1

PDU

FC ByteCt Data

2 bytes)

0x85 (binary 10000101)
0x01 (binary 00000001)

Data Interpretation:

Byte 1 (0x85): 1000
1):
2):
3):
4):
5):
6):
7):
8):

rF ® ® B ©®© B ® B

0101
(ON)
(OFF)
(ON)
(OFF)
(ON)
(OFF)
(OFF)
(ON)

Byte 2 (0x01): 0000 0001
Bit @ (Coil 9):
Bit 1 (Coil 10): © (OFF)

1 (ON) -> Wait, this should be OFF. Let's correct the example.

Corrected Example Response: Let's assume Coils 1, 3, 5, 8 are ON, and the rest are OFF.

e Coils 1-8: 10000101 binary = 0x85

e Coils 9-10: 00000000 binary = 0x00 (since 9 and 10 are OFF)

Correct Modbus TCP Response:

Chipkin Modbus Explorer (CAS-1000-20)

Last Updated: January 22, 2026

Page 120/ 190

[00 01][00 00][00 05][01] [01][02][85][00]

Exception Responses

FCO1 can return the following exceptions:

Exception 01 - lllegal Function

Cause: Device doesn't support FCO1. Response: [81][01]

Exception 02 - lllegal Data Address
Cause:

e Starting address doesn't exist.

e Starting address + quantity exceeds available coils. Response: [81][02]

Exception 03 - lllegal Data Value

Cause:

e Quantity is 0 or > 2000. Response: [81][03]

Exception 04 - Server Device Failure

Cause: Internal device error. Response: [81][04]

Best Practices

e Batch Reads: Read multiple coils in a single request to reduce network traffic.
e Validate Quantity: Ensure the requested quantity is within the valid range of 1-2000.

e Handle Byte/Bit Unpacking: Be careful when unpacking the bit data from the response bytes. Remember the LSB of the
first byte corresponds to the first coil address.

Related Topics

e Data Model: Coils

® Writing Coils: FCO5 - Write Single Coil, FC15 - Write Multiple Coils
e Read-Only Bits: FCO2 - Read Discrete Inputs

e Error Handling: Exceptions Overview

e Addressing: Addressing

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 121/ 190

FCO2 - Read Discrete Inputs

Function Code: 0x02 (2 decimal)
Purpose: Reads the ON/OFF status of 1 to 2000 contiguous discrete inputs in a server device.

Use Case: Used to get the current state of digital inputs, such as sensors, contacts, or buttons. This data is read-only.

Overview

FCO2 reads the status of discrete inputs, which are single-bit read-only values. Each input can be either ON (1) or OFF (0). This
function is nearly identical to FCO1 - Read Coils, but it reads from a different data table.

See: Data Model - Discrete Inputs

Request Format

PDU Structure:

I T T 1
| Function Code| Starting Address | Quantity of Inputs|
| oxe2 | (2 bytes) | (2 bytes) |
|
|

| (1 byte) | |
L | |

Request Fields:

o Lo Lo Lo

Function Code 1 byte 0x02 Fixed value
Starting Address 2 bytes 0x0000 - OxFFFF First input to read (0-based)
Quantity of Inputs 2 bytes 1-2000 Number of consecutive inputs

Valid Quantity Range: 1 to 2000 inputs (0x07D0)

Response Format

PDU Structure:

I T T
| Function Code| Byte Count | Input Status

| oxe2 | (1 byte) | (N bytes)

| (1 byte) | |
| | |

Response Fields:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 122/ 190

Function Code 1 byte 0x02 (echoed from request)
Byte Count 1 byte Number of data bytes to follow (ceil(Quantity / 8))
Input Status N bytes Input data packed into bytes

Bit Packing:

e The packing is identical to FCO1 - Read Coils. Inputs are packed into bytes, with the first input at the least significant bit
(LSB) of the first byte.

e If the quantity is not a multiple of 8, the remaining bits in the last byte are padded with zeros.

Complete Example

Example: Read 12 Discrete Inputs

Scenario: Read 12 discrete inputs starting at public address 10001 (protocol address 0).

Address Conversion:

Public Address: 10001
Point Number: 1
Protocol Address: © (0x0000)

See: Addressing

Modbus TCP Request:

—— MBAP Header T PDU]
[00 02][00 @0][00 06][01] [02][00 ©0][00 OC]
Trans Proto Len Unit FC Addr Qty=12

Breakdown:
Function: 0x02
Start Address: ©x0000 (Input 10001)
Quantity: 0x000C (12 inputs)

Modbus TCP Response:
Assume the following input states:

* Inputs 10001, 10002, 10005, 10011 are ON

e All others are OFF

—— MBAP Header T PDU]
[00 02][00 00][00 ©5][01] [0©2][02][13][04]
Trans Proto Len Unit FC ByteCt Data

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 123 /190

Breakdown:

Function: 0x02

Byte Count: 0x02 (ceil(12 / 8) = 2 bytes)
Data Byte 1: 0x13 (binary 00010011)

Data Byte 2: 0x04 (binary 00000100)

Data Interpretation:
Byte 1 (0x13): 0001 0011

Bit @ (Input 16001): 1 (ON)
Bit 1 (Input 16002): 1 (ON)
Bit 2 (Input 10003): © (OFF)
Bit 3 (Input 10004): © (OFF)
Bit 4 (Input 10005): 1 (ON)
Bit 5 (Input 10006): @ (OFF)
Bit 6 (Input 10007): @ (OFF)
Bit 7 (Input 10008): © (OFF)

Byte 2 (0x04): 0000 0100
Bit @ (Input 10009): © (OFF)
Bit 1 (Input 10010): © (OFF)
Bit 2 (Input 10011): 1 (ON)
Bit 3 (Input 10012): © (OFF)

Exception Responses

FCO2 can return the following exceptions:

Exception 01 - lllegal Function

Cause: Device doesn't support FCO2. Response: [82][01]

Exception 02 - lllegal Data Address

Cause:

e Starting address doesn't exist.

e Starting address + quantity exceeds available inputs. Response: [82][02]

Exception 03 - lllegal Data Value

Cause:

e Quantity is 0 or > 2000. Response: [82][03]

Exception 04 - Server Device Failure

Cause: Internal device error. Response: [82][04]

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 124 / 190

Best Practices

e Use for Read-Only Data: This function is intended for reading the status of physical inputs that cannot be changed by the
Modbus master.

e Batch Reads: Like FCO1 - Read Coils, read multiple inputs in a single request to improve efficiency.

e Verify Device Support: Ensure the device you are communicating with uses the discrete input table. Some devices map all
data to holding registers.

Related Topics

e Data Model: Discrete Inputs
e Read/Write Bits: FCO1 - Read Coils
e Error Handling: Exceptions Overview

e Addressing: Addressing

FCO3 - Read Holding Registers

Function Code: 0x03 (3 decimal)
Purpose: Reads the contents of contiguous holding registers from a server device.

This is the most commonly used Modbus function code because holding registers are versatile and can represent any type of
data.

Overview
FCO3 is used to read 16-bit register values from the holding register table. Holding registers typically contain:

e Process measurements and values
e Setpoints and configuration parameters
e Counters and accumulators

e Any data that can be read or written

See: Data Model - Holding Registers

Request Format

PDU Structure:

T T T 1
| Function Code| Starting Address | Quantity of Regs |

| exe3 | (2 bytes) | (2 bytes) |

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 125/ 190

| (1 byte) |
| | | |

Request Fields:

T

Function Code 1 byte 0x03 Fixed value
Starting Address 2 bytes 0x0000 - OxFFFF First register to read (0-based)
Quantity of Registers 2 bytes 1-125 Number of consecutive registers

Valid Quantity Range: 1 to 125 registers
Why 125 Maximum?

e Maximum PDU size: 253 bytes

e Response overhead: 1 (FC) + 1 (byte count) = 2 bytes
e Data per register: 2 bytes

e Maximum data: 253 - 2 = 251 bytes

e Maximum registers: 251 + 2 = 125.5 — 125 registers

Response Format

PDU Structure:

| T T
| Function Code| Byte Count | Register Values
| 0x03 | (1 byte) | (N x 2 bytes)

| (1 byte) I |
| | |

Response Fields:

R

Function Code 1 byte 0x03 (echoed from request)
Byte Count 1 byte Number of data bytes to follow (Quantity x 2)

Register Values N bytes Register data (2 bytes per register, big-endian)

Byte Encoding:

e Each register value: 2 bytes, big-endian (high byte first)

e Register N is followed by register N+1, etc.

Complete Example

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 126 / 190

Example 1: Read Two Holding Registers

Scenario: Read 2 holding registers starting at 40108 (public address)

Address Conversion:

Public Address: 40108
Point Number: 108
Protocol Address: 107 (©x006B)

See: Addressing for conversion details

Modbus TCP Request:

r—— MBAP Header T PDU]
[00 01][00 ©0][00 06][01] [03][00 6B][00 02]
Trans Proto Len Unit FC Addr Qty
ID ID
Breakdown:
Transaction ID: 0x0001
Protocol ID: 0x0000
Length: 0x0006 (6 bytes follow)
Unit ID: 0x01
Function: 0x03
Start Address: ©x006B (107 decimal = register 40108)
Quantity: 0x0002 (2 registers)

Modbus TCP Response:

—— MBAP Header T PDU]
[00 01][00 00][00 ©7][01] [03][04][02 2B][00 00]
Trans Proto Len Unit FC ByteCt Regl®7 Regles

Breakdown:
Transaction ID: 0x0001 (matches request)

Protocol ID: 0x0000

Length: 0x0007 (7 bytes follow)

Unit ID: 0x01

Function: 0x03

Byte Count: 0x04 (4 bytes = 2 registers x 2)

Register 107: ©0x022B (555 decimal)
Register 108: 0x0000 (0 decimal)

Results:
Holding Register 40108 = 555
Holding Register 40109 = ©

Modbus RTU Request:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 127 / 190

[01][@3][0@ 6B][@0 ©2][B4 C5]
Unit FC Addr Qty CRC

Breakdown:
Unit ID: ox01
Function: 0x03
Start Address: 0x006B
Quantity: 0x0002
CRC-16: OxC5B4 (transmitted LSB first as B4 C5)

Modbus RTU Response:

[01][@3][04][02 2B][60 @8][63 3A]
Unit FC ByteCt Regl@7 Regl@8 CRC

Breakdown:
Unit ID: ox01
Function: 0x03
Byte Count: ox04

Register 107: 0x022B (555)
Register 108: 0x0000 (0)
CRC-16: Ox3A63 (transmitted as 63 3A)

Example 2: Read Ten Registers

Scenario: Read registers 40001-40010 (10 registers)

Address Conversion:

Public Address: 40001
Point Number: 1
Protocol Address: © (©x0000)

Modbus TCP Request:

[00 02][00 00][00 06][01] [03][00 ©O][00 OA]
Trans Proto Len Unit FC Addr Qty=10

Modbus TCP Response (assuming all registers contain increasing values):

[60 ©2][00 00][00 17][01] [©3][14]
[00 01][00 ©2][00 ©3][00 ©4][00 ©5]
[00 06][00 ©7][00 08][00 ©9][00 OA]
Trans Proto Len Unit FC ByteCt=20
Rego Regl Reg2 Reg3 Reg4d
Reg5 Regb Reg7 Reg8 Reg9

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 128 / 190

Results:

40001 = 1
40002 = 2
40003 = 3
40010 = 10

Example 3: Maximum Quantity (125 Registers)

Modbus TCP Request:

[00 ©3][00 00][00 06][01] [03][00 ©0][00 7D]
Trans Proto Len Unit FC Addr Qty=125

Modbus TCP Response:

[00 ©3][00 ©0][@0 FB][01] [@3][FA][...250 bytes of data...]
Trans Proto Len Unit FC ByteCt=250

Length: ©x00FB = 251 bytes (1 Unit ID + 1 FC + 1 ByteCt + 250 data)
ByteCt: OxFA = 250 bytes (125 registers x 2 bytes/register)

Data Interpretation

16-bit Unsigned Integer (UINT16)

Default interpretation - treat each register as unsigned 0-65535:

Register value: 0x022B
Decimal: (©x02 x 256) + Ox2B = 512 + 43 = 555

16-bit Signed Integer (INT16)

For negative values, interpret as two's complement:

Register value: OXFFFE
Binary: 1111 1111 1111 111e
Signed: -2 (two's complement)

Calculation:
Bit 15 = 1 » negative number
Invert bits: 0000 0000 0000 0001
Add 1: 0000 0000 0000 0010 = 2
Result: -2

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 129/ 190

32-bit Values (Two Registers)

Combining two consecutive registers:

Register 40108: 0x0001
Register 40109: OxE240

Combined (big-endian ABCD):
Ox0001E240 = 123,456 decimal

Warning: Byte order varies by device. See: Byte Ordering

Floating Point (FLOAT32)

IEEE 754 representation using two registers:

Register 40108: 0Ox42F6
Register 40109: OXE666

Combined: Ox42F6E666
IEEE 754 decode: 123.45 (approximately)

See: Data Types - Floating Point

Scaled Values

Many devices use scaling for values with decimal points:

Register value: ©x0249 (585 decimal)
Device scaling: <10
Actual value: 58.5°C

Always check device documentation for scaling factors!

See: Data Types - Scaling

Using in Chipkin Modbus Explorer
Step-by-Step:
1. Select Function Code

o Choose "03 - Read Holding Registers" from dropdown

2. Enter Starting Address

o Use protocol address (0-based)

o Example: To read 40108, enter 107

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 130/ 190

o Or use address conversion calculator if available

3. Enter Quantity

© Number of consecutive registers (1-125)

o Example: 10 registers

4. Select Data Type (for interpretation)

o UINT16: Unsigned integer (default)

o INT16: Signed integer

o UINT32: 32-bit unsigned (uses 2 registers)
o FLOAT32: IEEE 754 float (uses 2 registers)

o Other types available

5. Choose Byte Order (for multi-register types)

o Big-Endian (ABCD) - Try this first (standard)
o Little-Endian (DCBA)
o Big-Endian Byte Swap (BADC)

o Little-Endian Byte Swap (CDAB)
6. Click Send Request

7. View Response

o Response automatically decoded
o Values displayed in selected data type

o Raw hex also shown

Exception Responses

FCO3 can return the following exceptions:

Exception 01 - lllegal Function

Cause: Device doesn't support FCO3 or not available in current state

Response:

[83][01]
FC ExCode
0x83 = Ox03 + 0x80

See: Exception 01 - Illegal Function

Exception 02 - lllegal Data Address

Cause:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 131/ 190

e Starting address doesn't exist
e Starting address + quantity exceeds available registers

e Address outside device's implemented range

Example: Device only has registers 0-99, but request asks for address 100

Response:

[83][02]
FC ExCode

See: Exception 02 - lllegal Data Address

Exception 03 - lllegal Data Value

Cause:

e Quantity is 0
e Quantity > 125

e Data field values invalid

Example: Quantity = 0x0000 or Quantity = 0x0100 (256)

Response:

[83][03]
FC ExCode

See: Exception 03 - lllegal Data Value

Exception 04 - Server Device Failure

Cause: Internal device error while processing request

Response:

[83][04]
FC ExCode

See: Exception 04 - Server Device Failure

Best Practices

Optimize Read Requests

Good - Single Request:

Read registers 40001-40010 (10 registers)
Request: [03][00 00][00 0A]

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 132/ 190

I Transactions: 1
Bad - Multiple Requests:

Read register 40001 - Request 1
Read register 40002 - Request 2

Read register 40010 - Request 10
Transactions: 10 (slow!)

Benefit: Batching reduces network overhead and improves performance

Stay Within Limits
Maximum safe quantity: 125 registers

Don't try to read more:

Bad: Quantity = 200 -» Exception @03 (Illegal Data Value)

Handle Sparse Address Maps

Many devices don't implement consecutive addresses:

Device has:
40001-40050: Process values
40201-40250: Configuration

Don't read 40001-40250 (wastes bandwidth)

Instead:
Request 1: Read 40001-40050
Request 2: Read 40201-40250

Verify Range Before Reading

FUNCTION readHoldingRegisters(startAddress, quantity)
// Validate the number of registers requested
IF quantity < 1 OR quantity > 125 THEN
THROW ERROR "Invalid quantity: must be between 1 and 125."
END IF

// Validate the starting address
IF startAddress < © OR startAddress > 65535 THEN

THROW ERROR "Invalid start address: must be between © and 65535."
END IF

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 133/ 190

// Ensure the read operation does not exceed the total address space
IF (startAddress + quantity) > 65536 THEN

THROW ERROR "The requested range (start address + quantity) exceeds the maximum address of 65535."
END IF

// If all checks pass, proceed with sending the Modbus request

Il oo
END FUNCTION

Read-Back After Write

For critical values, confirm writes:

. Write value using FCO6 or FC16

Wait briefly (10-56ms)

Read back using FC@3

. Verify value matches what was written

AW N R

See: FCO6 - Write Single Register

Common Use Cases

Process Monitoring

Reading sensor values:

Temperature: Register 40001 (UINT16, scale +10)
Pressure: Register 40002 (UINT16, scale +100)
Flow Rate: Register 40003-40004 (FLOAT32)

Status Word: Register 40010 (UINT16, bit flags)

Single request reads all:

FCO3, Address @, Quantity 11 - Reads 40001-40011

Configuration Reading

Reading device settings:

Setpoint: Register 40101
High Alarm: Register 40102
Low Alarm: Register 40103

Operating Mode: Register 40104

Status and Diagnostics

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 134 / 190

Reading device state:

Running Hours: Registers 40201-40202 (UINT32)
Error Count: Register 40203

Last Error Code: Register 40204

Firmware Version: Register 40210 (BCD encoded)

Related Topics
Data Organization:

e Data Model - Holding Registers

e Addressing - Converting public to protocol addresses

Similar Functions:

e FC04 - Read Input Registers - Read-only registers
e F[(C23 - Read/Write Multiple Registers - Combined read and write

Writing Data:

e FCO6 - Write Single Register - Write one register

e FC16 - Write Multiple Registers - Write many registers
Message Format:

e Message Structure - PDU and ADU details

Error Handling:

e Exceptions Overview
® Exception 02 - lllegal Data Address

e Exception 03 - lllegal Data Value

FCO4 - Read Input Registers

Function Code: 0x04 (4 decimal)
Purpose: Reads the contents of 1 to 125 contiguous input registers from a server device.

Use Case: Used to read read-only data from a device, such as sensor readings, measurements, or status information.

Overview

FCO4 reads 16-bit register values from the input register table. This function is nearly identical to FCO3 - Read Holding Registers, but

it reads from a different, read-only data table.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 135/ 190

See: Data Model - Input Registers

Request Format

PDU Structure:

T		
Function Code	Starting Address	Quantity of Regs
ox04	(2 bytes)	(2 bytes)

| (1 byte) I
| |

Request Fields:

Function Code 1 byte 0x04 Fixed value
Starting Address 2 bytes 0x0000 - OXFFFF First register to read (0-based)
Quantity of Registers 2 bytes 1-125 Number of consecutive registers

Valid Quantity Range: 1 to 125 registers

Response Format

PDU Structure:

| T T
| Function Code| Byte Count | Register Values
| ox04 | (1 byte) | (N x 2 bytes)

| (1 byte) I |
| | |

Response Fields:

R

Function Code 1 byte 0x04 (echoed from request)
Byte Count 1 byte Number of data bytes to follow (Quantity x 2)

Register Values N bytes Register data (2 bytes per register, big-endian)

Complete Example

Example: Read One Input Register

Scenario: Read 1 input register at public address 30001 (protocol address 0).

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 136/ 190

Address Conversion:

Public Address: 30001
Point Number: 1
Protocol Address: © (0©x0000)

See: Addressing

Modbus TCP Request:

—— MBAP Header T PDU]
[00 ©3][00 ©0][00 ©6][01] [04][00 ©0][00 ©1]
Trans Proto Len Unit FC Addr Qty=1

Breakdown:
Function: 0x04
Start Address: ©x0000 (Input Register 30001)
Quantity: 0x0001 (1 register)

Modbus TCP Response:

Assume the register contains the value 1234 (0x04D2).

—— MBAP Header T PDU 1
[00 ©3][00 00][00 ©5][01] [04][02][04 D2]
Trans Proto Len Unit FC ByteCt Data

Breakdown:
Function: ox04
Byte Count: 0x02 (1 register x 2 bytes)

Register Value: 0x04D2 (1234 decimal)

Data Interpretation

The data in input registers is interpreted in the same way as holding registers (FC03 - Read Holding Registers). Common formats

include:

® 16-bit Unsigned/Signed Integers
e 32-bit Unsigned/Signed Integers (using two registers)
e 32-bit Floating Point (using two registers)

e Scaled values

Refer to the FCO3 Data Interpretation section for detailed examples.

Exception Responses

FCO4 can return the following exceptions:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 137 /190

Exception 01 - lllegal Function

Cause: Device doesn't support FCO4. Response: [84][01]

Exception 02 - lllegal Data Address

Cause:

e Starting address doesn't exist.

e Starting address + quantity exceeds available registers. Response: [84][02]

Exception 03 - lllegal Data Value

Cause:

e Quantity is 0 or > 125. Response: [84][03]

Exception 04 - Server Device Failure

Cause: Internal device error. Response: [84][04]

Best Practices

e Use for Read-Only Registers: This function is specifically for reading registers that are not writable by the Modbus master.
e Batch Reads: Combine multiple reads into a single request to minimize network overhead.

e Check Device Documentation: Always verify which data tables the device uses. Some devices place all data, including

read-only values, in holding registers (readable with FCO3 - Read Holding Registers).

Related Topics

e Data Model: Input Registers
e Read/Write Registers: FC03 - Read Holding Registers
e Error Handling: Exceptions Overview

e Addressing: Addressing

FCO5 - Write Single Coil

Function Code: 0x05 (5 decimal)
Purpose: Writes a single discrete output (coil) to either ON or OFF in a server device.

Use Case: Used to control a single digital output, such as turning a relay on or off.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 138 /190

Overview
FCO5 is used to set the state of a single coil. The value to be written is specified directly in the request.

See: Data Model - Coils

Request Format

PDU Structure:

| | T
| Function Code| Output Address | Output Value

| 0x05 | (2 bytes) | (2 bytes)

| (1 byte) I |
| | |

Request Fields:

Function Code 1 byte 0x05 Fixed value
Output Address 2 bytes 0x0000 - OxFFFF Address of the coil to write (0-based)

Output Value 2 bytes 0xFFOO or 0x0000 Value to write: ON or OFF

Valid Output Values:

* ON: OxFFOO
e OFF: 0x0000

® Any non-zero value in the high byte is treated as ON. The low byte is ignored.

Response Format
The normal response is an echo of the request, confirming that the coil was written.

PDU Structure:

I T
| Function Code| Output Address Output Value

T
|
| 0x05 | (2 bytes) | (2 bytes)
|
1

| (1 byte) |
| |

Response Fields:

oo o

Function Code 1 byte 0x05 (echoed from request)

Output Address 2 bytes Echoed from request

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 139/ 190

Output Value 2 bytes Echoed from request

Complete Example

Example: Turn a Coil ON

Scenario: Turn ON the coil at public address 173 (protocol address 172).

Address Conversion:

Public Address: 173
Point Number: 173
Protocol Address: 172 (@x00AC)

See: Addressing

Modbus TCP Request:

—— MBAP Header T PDU]
[00 04][00 00][00 ©6][01] [05][00 AC][FF 00]
Trans Proto Len Unit FC Addr Value=ON

Breakdown:
Function: 0x05
Output Address: Ox00AC (Coil 173)
Output Value: OxFFO0 (ON)

Modbus TCP Response:

The response is an exact copy of the request PDU, confirming the write.

—— MBAP Header T PDU]
[00 04][00 00][00 ©6][01] [05][00 AC][FF 00]
Trans Proto Len Unit FC Addr Value=0ON

Exception Responses

FCO5 can return the following exceptions:

Exception 01 - lllegal Function

Cause: Device doesn't support FCO5. Response: [85][01]

Exception 02 - lllegal Data Address

Cause: The specified coil address does not exist. Response: [85][02]

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 140/ 190

Exception 03 - lllegal Data Value

Cause: The Output Value is not OxFFOO or 0x0000. (Note: some devices may ignore this and treat any non-zero value as ON).
Response: [85][03]

Exception 04 - Server Device Failure

Cause: Internal device error. Response: [85][04]

Best Practices

e Read-Back Verification: For critical operations, it's good practice to follow a write (FC05) with a read (FCO1 - Read Coils) to

confirm the state of the coil has changed as expected.

e Use for Single Points: This function is efficient for changing a single coil. For multiple coils, use FC15 - Write Multiple Coils

to reduce transactions.

Related Topics

e Data Model: Coils

e Reading Coils: FCO1 - Read Coils

e Writing Multiple Coils: FC15 - Write Multiple Coils
e Error Handling: Exceptions Overview

® Addressing: Addressing

FCO6 - Write Single Register

Function Code: 0x06 (6 decimal)
Purpose: Writes a single 16-bit value to a holding register in a server device.

Use Case: Used to change a single configuration parameter, setpoint, or any other writable 16-bit data point.

Overview

FCO06 is used to set the value of a single holding register. The value to be written is specified directly in the request. This function is

analogous to FCO5 - Write Single Coil but operates on 16-bit registers instead of single-bit coils.

See: Data Model - Holding Registers

Request Format

PDU Structure:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 141/ 190

I T T
| Function Code| Register Address | Register Value
| exe6 | (2 bytes) | (2 bytes)

| (1 byte) | |
L | |

Request Fields:

Function Code 1 byte 0x06 Fixed value
Register Address 2 bytes 0x0000 - OXFFFF Address of the register to write (0-based)

Register Value 2 bytes 0x0000 - OXFFFF Value to write (0-65535)

Response Format
The normal response is an echo of the request, confirming that the register was written.

PDU Structure:

1
| Function Code| Register Address | Register Value |
| oxe6 | (2 bytes) | (2 bytes) |

|

|

| (1 byte) | |
| | |

Response Fields:

m

Function Code 1 byte 0x06 (echoed from request)
Register Address 2 bytes Echoed from request

Register Value 2 bytes Echoed from request

Complete Example

Example: Write to a Holding Register

Scenario: Write the value 100 to the holding register at public address 40001 (protocol address 0).

Address Conversion:

Public Address: 40001
Point Number: 1
Protocol Address: © (0x0000)

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 142/ 190

See: Addressing

Modbus TCP Request:

—— MBAP Header T PDU]
[00 ©5][00 @0][00 06][01] [06][00 00][00 64]
Trans Proto Len Unit FC Addr Value=100

Breakdown:
Function: 0x06
Register Address: 0x0000 (Register 40001)
Register Value: 0x0064 (100 decimal)

Modbus TCP Response:

The response is an exact copy of the request PDU.

—— MBAP Header T PDU]
[00 05][00 0R][00 06][01] [06][00 ©O][00 64]
Trans Proto Len Unit FC Addr Value=100

Exception Responses

FCO6 can return the following exceptions:

Exception 01 - lllegal Function

Cause: Device doesn't support FCO6. Response: [86][01]

Exception 02 - lllegal Data Address

Cause: The specified register address does not exist or is read-only. Response: [86][02]

Exception 03 - lllegal Data Value

Cause: The value to be written is invalid for the specified register (e.g., out of range for the device's application logic). Note that this
is application-level validation; the Modbus protocol itself does not validate the data value beyond its 16-bit range. Response: [86]
[03]

Exception 04 - Server Device Failure

Cause: Internal device error. Response: [86][04]

Best Practices

e Read-Back Verification: For critical setpoints or configuration, follow a write (FC06) with a read (FCO3 - Read Holding
Registers) to ensure the value was written correctly.

e Use for Single Registers: This function is ideal for changing one register at a time. For multiple registers, use FC16 - Write
Multiple Registers to improve efficiency.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 143 /190

e Data Type Awareness: Remember that you are writing a 16-bit integer. If this register is part of a larger data type (like a
32-bit float), you must perform two separate FC06 writes or a single FC16 - Write Multiple Registers write to update the
entire value correctly.

Related Topics

Data Model: Holding Registers

® Reading Registers: FC0O3 - Read Holding Registers

e Writing Multiple Registers: FC16 - Write Multiple Registers
e Error Handling: Exceptions Overview

e Addressing: Addressing

FCO8 - Diagnostics

Function Code: 0x08 (8 decimal)
Purpose: Provides a series of diagnostic tests and queries for checking the communication status between a client and a server.

Use Case: Used for troubleshooting network issues, monitoring device health, and gathering communication statistics.

Overview

FCO8 is a multi-purpose function that operates using a two-byte sub-function code specified in the request. The server's response
depends on the sub-function requested.

Request/Response Format
The PDU for FCO8 is generic, but the Data field's content and meaning change based on the sub-function.

General Request PDU:

I T T

| Function Code| Sub-function | pata

| 0x08 | (2 bytes) | (N bytes)
|
I

| (1 byte) |
| |

General Response PDU:

The response is an echo of the request's function and sub-function, followed by data specific to the sub-function.

I T T 1
| Function Code| Sub-function | pata |

| oxes | (2 bytes) | (N bytes) |

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 144 / 190

| (1 byte) |

Standard Sub-functions

Here are some of the most common standard sub-function codes.

Sub-function 0000: Return Query Data

This is a simple loopback test. The server echoes back the exact data it received in the request.

® Purpose: To verify that the communication path is working and that the server is processing requests.
e Request Data: Any data, up to 250 bytes.

e Response Data: An exact copy of the request data.

Example:

Request:

[08][00 @0][DE AD] // Sub-function 0000, Data: ©OxDEAD

Response:

[e8][00 ©0][DE AD] // Echoes the request

Sub-function 0001: Restart Communications Option

This sub-function commands a server to restart its communication port.

® Purpose: To reset a device's communication stack remotely.

e Request Data: Optional data. If the data is ©x0000 , the server performs a cold restart, clearing its communication event
log. If @xFFee , it performs a warm restart, leaving the log intact.

e Response: Echoes the request.

Example (Cold Restart):

Request:

[e8][@0 01][00 00]

Response:

[08][00 01][00 00]

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 145/ 190

Sub-function 0002: Return Diagnostic Register

Retrieves the contents of the server's 16-bit diagnostic register.

e Purpose: To get a quick status overview. The bits of this register are device-specific.
® Request Data: None (2 bytes of 0x0000).

® Response Data: The 16-bit value of the diagnostic register.

Example:

Request:

[08][00 02][00 00]

Response:

[e8][00 ©2][01 ©5] // Diagnostic register contains ©x0105

Sub-function 0011 (0x0B): Return Bus Message Count

Retrieves a 16-bit counter of the total number of messages the server has detected on the bus since its last restart or counter reset.

e Purpose: To monitor network traffic and health.
® Request Data: None (2 bytes of 0x0000).

® Response Data: A 16-bit count of messages.

Example:

Request:

[08][00 @B][00 00]

Response:

[e8][00 ©B][04 D2] // 1234 messages detected

Sub-function 0012 (0x0C): Return Bus Communication Error Count

Retrieves a 16-bit counter of communication errors (e.g., parity, framing, CRC errors) detected by the server.

e Purpose: To diagnose physical layer or noise issues on the network.

® Request Data: None (2 bytes of 0x0000).

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 146 / 190

e Response Data: A 16-bit count of communication errors.

Example:

Request:

[08][0@ oC][00 00]

Response:

[68][00 ©C][0©0 ©5] // 5 communication errors detected

Sub-function 0013 (0x0D): Return Bus Exception Error Count

Retrieves a 16-bit counter of the number of exception responses the server has sent.

® Purpose: To identify configuration or application-level errors.
e Request Data: None (2 bytes of 0x0000).

e Response Data: A 16-bit count of exceptions sent.

Example:

Request:

[08][e@ @D][00 00]

Response:

[68][00 ©D][©0 1A] // 26 exception responses sent

Sub-function 0010 (0x0A): Clear Counters and Diagnostic Register

Resets all diagnostic counters and the diagnostic register to zero.

® Purpose: To establish a new baseline for monitoring.
e Request Data: None (2 bytes of 0x0000).

e Response: Echoes the request.

Example:

Request:

[08][00 @A][00 00]

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 147 / 190

Response:

[08][00 OA][00 00]

Exception Responses

FCO8 can return the following exceptions:

Exception 01 - lllegal Function

Cause: Device doesn't support FCO8. Response: [88][01]

Exception 03 - lllegal Data Value

Cause: The requested sub-function code is not supported by the device. Response: [88][03]

Exception 04 - Server Device Failure

Cause: Internal device error. Response: [88][04]

Best Practices

e Use for Troubleshooting: FC08 is an invaluable tool for diagnosing communication problems without needing physical
access to the device.

e Check for Support: Not all devices implement all sub-functions. Always consult the device's documentation to see which
diagnostics are available.

e Establish Baselines: When monitoring a network, use sub-function 0x0A to clear counters, then poll the other counter
sub-functions periodically to measure error rates over time.

Related Topics

e Error Handling: Exceptions Overview
e Other Diagnostic Functions: FC11 - Get Comm Event Counter

* Troubleshooting: Troubleshooting Guide

FC11 - Get Comm Event Counter

Function Code: 0x0B (11 decimal)
Purpose: Fetches a status word and a count of communication events from a server device.

Use Case: To monitor the health of a device's communication port and track the number of successful messages processed.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 148 / 190

Overview
FC11 provides a way to get two key pieces of information:

1. Status Word: A 16-bit word indicating the current state of the communication port (e.g., busy, ready).

2. Event Counter: A 16-bit counter of the number of successful communication events.

This function is useful for clients that need to coordinate with a server that may be busy with long-running tasks.

Request Format

The request PDU for FC11 is empty. It only contains the function code.

PDU Structure:

1
| Function Code|
| oxeB |

| (1 byte) I
|

Response Format

PDU Structure:

[I T 1
| Function Code| Status | Event Count |
| 0x0B | (2 bytes) | (2 bytes) |
I |
| |

| (1 byte) I
| |

Response Fields:

N

Function Code 1 byte 0x0B (echoed from request)
Status 2 bytes exeooo if ready, exrrrr if busy
Event Count 2 bytes Number of successful communication events

Status Word Values:

® 0x0000 : The server is ready to accept a new request.

® OXFFFF : The server is busy processing a long-duration command. The client should not send a new request until the
server is ready.

Complete Example

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 149/ 190

Scenario: A client polls a server to check its status.

Modbus TCP Request:

—— MBAP Header ———— PDU —
[00 08][00 00][00 ©2][01] [0B]

Trans Proto Len Unit FC

Breakdown:
Function: ©xeB

Modbus TCP Response (Server is Ready):

—— MBAP Header T PDU 1
[00 08][00 00][00 ©5][01] [0B][00 ©O][01 F4]
Trans Proto Len Unit FC Status EventCt

Breakdown:
Function: 0x0B
Status: 0x0000 (Ready)

Event Count: ©x01F4 (500 events)

Modbus TCP Response (Server is Busy):

—— MBAP Header T PDU]
[00 08][00 00][00 ©5][01] [@B][FF FF][01 F4]
Trans Proto Len Unit FC Status EventCt

Breakdown:
Function: 0x0B
Status: OXFFFF (Busy)

Event Count: Ox01F4 (500 events)

Exception Responses

FC11 can return the following exceptions:

Exception 01 - lllegal Function

Cause: Device doesn't support FC11. Response: [8B][01]

Exception 04 - Server Device Failure

Cause: Internal device error. Response: [8B][04]

Best Practices

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 150/ 190

e Polling for Status: This function is designed to be polled. A client can use it to wait for a server to become available after

sending a long-running command (e.g., a programming command acknowledged with Exception 05).

e Event Counter Monitoring: The event counter can be used to detect if a device has restarted. If the counter value is less

than the previously recorded value, the device has likely reset.

e Alternative to FCO08: This function provides a subset of the information available through FC08 - Diagnostics but in a more

direct and compact format.

Related Topics

e Error Handling: Exceptions Overview
e Other Diagnostic Functions: FC08 - Diagnostics
¢ Long-Running Commands: Exception 05 - Acknowledge

¢ Troubleshooting: Troubleshooting Guide

FC15 - Write Multiple Coils

Function Code: 0xOF (15 decimal)
Purpose: Writes a sequence of coils to either ON or OFF in a server device.

Use Case: Used to control multiple digital outputs at once, such as setting a pattern on a bank of lights or relays.

Overview

FC15 allows a client to set the state of multiple contiguous coils in a single transaction. The coil states are packed into bytes in the
request message.

See: Data Model - Coils

Request Format

PDU Structure:

I T
| Function Code| Starting Address

I I I
|
| exeF | (2 bytes) |
|
|

Quantity of Coils | Byte Count | Write Data
(2 bytes) | (1 byte) | (N bytes)

| (1 byte) |
| |

Request Fields:

o Lo Lo e

Function Code 1 byte 0xOF Fixed value

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 151/ 190

Starting Address 2 bytes 0x0000 - OxFFFF First coil to write (0-based)

Quantity of Coils 2 bytes 1-1968 Number of consecutive coils to write
Byte Count 1 byte 1-246 Number of data bytes to follow (ceil(Quantity / 8))
Write Data N bytes Coil states packed into bytes

Valid Quantity Range: 1 to 1968 coils (0x07B0)
Bit Packing:

e The coil states are packed into bytes, with the first coil corresponding to the LSB of the first data byte. This is the same
packing format used in the response of FCO1 - Read Coils.

Response Format
The normal response confirms the starting address and the quantity of coils written.

PDU Structure:

| 1
| Function Code| Starting Address | Quantity of Coils |
| OXOF | (2 bytes) | (2 bytes) |

| |
| |

| (1 byte) I
| |

Response Fields:

oL Lo

Function Code 1 byte 0xOF (echoed from request)
Starting Address 2 bytes Echoed from request

Quantity of Coils 2 bytes Echoed from request

Complete Example

Example: Write 10 Coils

Scenario: Write to 10 coils starting at public address 20 (protocol address 19).

e Coils 20, 22, 24 ON

e All others OFF

Address Conversion:

Public Address: 20
Point Number: 20

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 152/ 190

I Protocol Address: 19 (0x0013)

See: Addressing
Data to Write:

e Coils 20-27: 00010101 binary = @x15

e Coils 28-29: 00000000 binary = 0x00

Modbus TCP Request:

—— MBAP Header T PDU 1
[00 06][00 00][00 0©8][01] [OF][00 13][00 OA][02][15 00]
Trans Proto Len Unit FC Addr Qty ByteCt Data

Breakdown:
Function: OxOF
Start Address: 0x0013 (Coil 20)
Quantity of Coils:0x000A (10 coils)
Byte Count: 0x02 (ceil(1e / 8) = 2 bytes)
Write Data: 0x1500

Modbus TCP Response:

—— MBAP Header T PDU]
[00 06][00 00][00 06][01] [OF][00 13][00 OA]
Trans Proto Len Unit FC Addr Qty

Exception Responses

FC15 can return the following exceptions:

Exception 01 - lllegal Function

Cause: Device doesn't support FC15. Response: [8F][01]

Exception 02 - lllegal Data Address

Cause:

e The starting address does not exist.

e The range (start address + quantity) exceeds the available coils. Response: [8F][02]

Exception 03 - lllegal Data Value

Cause:

e The quantity is 0 or > 1968.

e The byte count does not match the quantity (e.g., Byte Count != ceil(Quantity / 8)). Response: [8F][03]

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 153/ 190

Exception 04 - Server Device Failure

Cause: Internal device error. Response: [8F][04]

Best Practices

e Efficiency: Use FC15 instead of multiple FCO5 - Write Single Coil requests to write to several coils at once. This significantly
reduces network overhead.

e Read-Back Verification: For critical control sequences, follow an FC15 write with an FCO1 - Read Coils read to verify that
all coils have been set to their intended states.

e Data Packing: Pay close attention to the bit packing order (LSB first) when constructing the Write Data field.

Related Topics

e Data Model: Coils

e Reading Coils: FCO1 - Read Coils

e Writing a Single Coil: FCO5 - Write Single Coll
e Error Handling: Exceptions Overview

® Addressing: Addressing

FC16 - Write Multiple Registers

Function Code: 0x10 (16 decimal)
Purpose: Writes a block of contiguous holding registers (1 to 123 registers) in a server device.

Use Case: Used to change multiple configuration parameters, download a recipe, or write any block of 16-bit data in a single

transaction.

Overview

FC16 allows a client to set the values of multiple contiguous holding registers. This is one of the most powerful and commonly used
functions for configuring devices.

See: Data Model - Holding Registers

Request Format

PDU Structure:

| T T | T |
| Function Code| Starting Address | Quantity of Regs | Byte Count | Register Values|

| exie | (2 bytes) (2 bytes) | (1 byte) | (N x 2 bytes) |

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 154 / 190

| (1 byte) |
| | | | | |

Request Fields:

e e e

Function Code 1 byte 0x10 Fixed value
Starting Address 2 bytes 0x0000 - OxFFFF First register to write (0-based)
Quantity of . . .

. 2 bytes 1-123 Number of consecutive registers to write
Registers

Number of data bytes to follow (Quantity

Byte Count 1 byte 2 - 246
x 2)

A N Register data (2 bytes per register, big-
Register Values .
bytes endian)

Valid Quantity Range: 1 to 123 registers (0x007B)

Response Format
The normal response confirms the starting address and the quantity of registers written.

PDU Structure:

|
| Function Code| Starting Address | Quantity of Regs
| ex1e | (2 bytes) | (2 bytes)
|

| (1 byte) I
| |

Response Fields:
Function Code 1 byte 0x10 (echoed from request)

Starting Address 2 bytes Echoed from request

Quantity of Registers 2 bytes Echoed from request

Complete Example

Example: Write Two Registers

Scenario: Write two holding registers starting at public address 40001 (protocol address 0).

® Register 40001 = 10
e Register 40002 = 20

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 155/ 190

Address Conversion:

Public Address: 40001
Point Number: 1
Protocol Address: © (0©x0000)

See: Addressing

Modbus TCP Request:

—— MBAP Header T PDU 1
[00 07][00 @O][00 09][01] [10][00 @R][00 ©2][@4][00 OA 00 14]
Trans Proto Len Unit FC Addr Qty ByteCt Data

Breakdown:
Function: 0x10
Start Address: 0x0000 (Register 40001)
Quantity of Regs: 0x0002 (2 registers)
Byte Count: 0x04 (2 registers x 2 bytes)

Register Values: ©x000A (10), 0x0014 (20)

Modbus TCP Response:

—— MBAP Header T PDU]
[00 07][00 @@][00 06][01] [10][00 @B][00 02]
Trans Proto Len Unit FC Addr Qty

Exception Responses

FC16 can return the following exceptions:

Exception 01 - lllegal Function

Cause: Device doesn't support FC16. Response: [90][01]

Exception 02 - lllegal Data Address

Cause:

e The starting address does not exist.
e The range (start address + quantity) exceeds the available registers.

e Any register in the range is read-only. Response: [90][02]

Exception 03 - lllegal Data Value

Cause:

e The quantity is 0 or > 123.

e The byte count is incorrect (Byte Count != Quantity * 2).

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 156 / 190

e Any datavalue in the Register Values field is invalid for the corresponding register (application-level validation).

Response: [90][03]

Exception 04 - Server Device Failure

Cause: Internal device error. Response: [90][04]

Best Practices

e Efficiency: This is the preferred function for writing multiple registers. Use it instead of multiple FCO6 - Write Single
Register requests to reduce network traffic and latency.

e Data Integrity: When writing multi-register values (e.g., 32-bit floats), use a single FC16 request to ensure the entire value
is updated atomically. Using multiple FC06 - Write Single Register requests could lead to a temporary inconsistent state if

the connection is interrupted between writes.

e Read-Back Verification: For critical data, follow an FC16 write with an FC03 - Read Holding Registers read to confirm that

all registers have been updated correctly.

Related Topics

e Data Model: Holding Registers

e Reading Registers: FCO3 - Read Holding Registers

® Writing a Single Register: FCO6 - Write Single Register
e Error Handling: Exceptions Overview

e Addressing: Addressing

FC23 - Read/Write Multiple Registers

Function Code: 0x17 (23 decimal)

Purpose: Performs a combined read and write operation in a single Modbus transaction, which avoids the possibility of a race

condition.

Use Case: Ideal for applications where a client needs to write new values to a set of registers and simultaneously read back a

different set of registers, ensuring the write operation completes before the read begins.

Overview

FC23 combines the functionality of a read (like FCO3 - Read Holding Registers) and a write (like FC16 - Write Multiple Registers) into
a single, atomic operation on the server side. The server is guaranteed to execute the write first, and then the read.

This is particularly useful in control loops where, for example, a new setpoint is written and the resulting process variable is read
back immediately.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 157 / 190

Request Format

The request PDU specifies both the read and write parameters.

PDU Structure:

Byte | Write Data |

| ex17 | (2 bytes)
(1B) | (N x 2 bytes) |
| (1 byte) |

| Function Code| Read Start Addr | Read Quantity

| (2 bytes)

| write Start Addr | Write Quantity

| (2 bytes)

| (2 bytes)

| write

| Count

Request Fields:

m

Function Code 1 byte

Read Start Addr 2 bytes
Read Quantity 2 bytes
Write Start Addr 2 bytes
Write Quantity 2 bytes

Write Byte Count 1 byte

Write Data N bytes

Response Format

0x17

0x0000 - OXFFFF
1-125

0x0000 - OxFFFF
1-121

2-242

Values to write (2 bytes per register)

The response contains the data from the read portion of the operation.

PDU Structure:

| ex17

| (1 byte) I
| |

| | T
| Function Code| Read Byte | Read Data
| count (1B) | (N x 2 bytes)

Response Fields:

o o Lo

Function Code 1 byte
Read Byte Count 1 byte

Read Data N bytes

Chipkin Modbus Explorer (CAS-1000-20)

0x17 (echoed from request)

Read Quantity X 2

Data from the read registers

Fixed value

First holding register to read
Number of registers to read
First holding register to write
Number of registers to write

Write Quantity X 2

Last Updated: January 22, 2026

Page 158 / 190

Complete Example
Scenario:

e Write: Write the value 3 to register 40001 .

e Read: Read the value of register 40011 .

Modbus TCP Request:

[10][00 00][00 @B][01] [17][00 @A][60 01][00 ©8][00 ©1][62][00 03]
Trans Proto Len Unit FC ReadAddr ReadQty WriteAddr WriteQty ByteCt WriteData

Breakdown:
Function: ox17
Read Start Addr: ©0x000A (Register 40011)
Read Quantity: 0x0001

Write Start Addr: 0x0000 (Register 40001)
Write Quantity: 0x0001

Write Byte Count: 0x02

Write Data: 0x0003

Modbus TCP Response:

Assume register 40011 contains the value 123 (0x007B).

[10][00 @0][00 ©5][01] [17][02][00 7B]
Trans Proto Len Unit FC ByteCt ReadData

Breakdown:
Function: ox17
Read Byte Count:0x02
Read Data: 0x007B (Value of register 40011)

Exception Responses

FC23 can return the following exceptions:

Exception 01 - lllegal Function

Cause: Device doesn't support FC23. Response: [97][01]

Exception 02 - lllegal Data Address

Cause:

e Any address in the read or write range is invalid or does not exist.

® Any register in the write range is read-only. Response: [97][02]

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 159/ 190

Exception 03 - lllegal Data Value

Cause:

e Invalid quantity for read or write.
® |Incorrect Write Byte Count .

e |nvalid data value in the Write Data field. Response: [97][03]

Exception 04 - Server Device Failure

Cause: Internal device error during the read or write operation. Response: [97][04]

Best Practices

e Atomic Operations: Use FC23 to ensure that a write operation is completed before a subsequent read, preventing race
conditions where a client might read stale data.

e Efficiency: While slightly more complex, FC23 is more efficient than sending separate FC16 - Write Multiple Registers
(write) and FCO3 - Read Holding Registers (read) requests, as it halves the number of required transactions.

® Device Support: This is a less common function. Always verify that the target device supports FC23 before implementing it

in an application.

Related Topics

e Reading Registers: FC03 - Read Holding Registers
® Writing Registers: FC16 - Write Multiple Registers
e Error Handling: Exceptions Overview

e Addressing: Addressing

FC43 / MEI 14 - Read Device Identification

Function Code: 0x2B (43 decimal) MEI Type: OxOE (14 decimal)
Purpose: To read identifying information from a server, such as vendor name, product code, and version.

Use Case: Essential for auto-discovery, device verification, and asset management. It allows a client to programmatically identify a

device without prior knowledge.

Overview

This function provides a structured way to access a device's identity. It operates on a "category" of objects, each with a specific

Object ID. The client requests one or more of these objects, and the server returns their values.

The function code is ©x2B , and it uses a Modbus Encapsulated Interface (MEI) type ©0x®E .

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 160/ 190

Request Format

PDU Structure:

I T T T 1
Function Code	MEI Type	Read Device	Object ID
ex2B	exeE	ID Code	(1 byte)
(1 byte)	(1 byte)	(1 byte)	
L L l L |

Request Fields:

_

Function Code 1 byte 0x2B Fixed value
MEI Type 1 byte OxOE Specifies "Read Device Identification"
Read Device ID Code 1 byte 0x01-0x04 Type of access

Object ID 1 byte 0x00-0xFF The specific piece of information requested

Read Device ID Codes:

e 0x01 : Request to get basic device identification (stream access).
e 0x02 :Request to get regular device identification (stream access).
® 0x03 : Request to get extended device identification (stream access).

® 0x04 : Request to get one specific identification object (individual access).

Response Format
The response is complex and includes a list of objects, each with an ID, length, and value.

PDU Structure (Simplified):
[FC][MEI][ID Code][Conformity][More][NextObjID] [Num Objs] [Objl ID][Objl Len][Objl Val]...

Key Response Fields:

e Conformity Level: Indicates how well the device conforms to the specification.

e More Follows: 0x00 if this is the last response fragment, ©xFF if more fragments are coming.
e Next Object ID: The ID of the next available object, used for streaming.

e Number of Objects: How many objects are included in this response.

e Object List: A series of (ID, Length, Value) triplets.

Standard Object IDs

The specification defines three categories of objects:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 161/ 190

Basic Device Identification (ID Code 0x01)

e 0x00 VendorName: The manufacturer's name (ASCII string).
e 0x01 ProductCode: The device's model number (ASCII string).

e 0x02 MajorMinorRevision: The device's firmware version (ASCII string).

Regular Device Identification (ID Code 0x02)

Includes Basic objects, plus:

0x03 VendorUrl: Manufacturer's website (ASCII string).

0x04 ProductName: The device's brand name (ASCII string).

0x05 ModelName: The specific model name (ASCII string).

0x06 UserApplicationName: User-defined application name (ASCII string).

Extended Device Identification (ID Code 0x03)

® Includes all Basic and Regular objects.
e x07-0x7F : Reserved for public definition.

® 0Ox80-0xFF : Vendor-specific objects.

Complete Example
Scenario: Request the VendorName (Object ID 0x00) from a device.
Modbus TCP Request (Individual Access):

[00 09][00 @O][00 04][01] [2B][@E][@4][00]
Trans Proto Len Unit FC MEI ID-Code ObjID

Breakdown:
Function: ox2B
MEI Type: OxOE
Read Device ID: 0x04 (get one specific object)
Object ID: 0x00 (VendorName)

Modbus TCP Response:

Assume the vendor is "Chipkin".

[00 09][00 @O][00 OF][01] [2B][OE][@4][81][@0][0@0][01] [@0][07]["Chipkin"]
Trans Proto Len Unit FC MEI ... ObjID Len Value

Breakdown (PDU only):
[2B OE 04 81 00 00 01] - Header info
[e@] - Object ID: VendorName

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 162/ 190

[07] - Length: 7 bytes
[43 68 69 70 6B 69 6E] - "Chipkin" in ASCII

Exception Responses

FC43 can return the following exceptions:

Exception 01 - lllegal Function

Cause: Device doesn't support FC43. Response: [AB][01]

Exception 02 - lllegal Data Address

Cause: The requested Object ID does not exist. Response: [AB][02]

Exception 03 - lllegal Data Value

Cause: The Read Device ID Code is not supported. Response: [AB][03]

Exception 04 - Server Device Failure

Cause: Internal device error. Response: [AB][04]

Best Practices

e Use for Discovery: This function is the standard way to identify Modbus devices on a network. A discovery tool can iterate

through addresses and send an FC43 request to build a map of the network.

e Handle Streamed Responses: \When requesting Basic, Regular, or Extended information, be prepared to handle

fragmented responses where More Follows is OxFF .

e Check Conformity Level: The conformity level in the response tells you how much you can rely on the device's

implementation of this function.

Related Topics

e Discovery: Discovery Guide
e Error Handling: Exceptions Overview

* Troubleshooting: Troubleshooting Guide

Glossary of Modbus Terms

This glossary defines all key Modbus terms as specified in the Modbus Application Protocol Specification and provides cross-
references to relevant sections in this manual.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 163 / 190

A

ADU (Application Data Unit)

The complete Modbus message frame that includes transport-specific headers plus the PDU. The ADU format differs between
transport types:

e Modbus RTU: [Unit ID][PDU][CRC-16]

e Modbus TCP: [MBAP Header][PDU]

The ADU represents the full packet transmitted over the physical medium.
See also: PDU, MBAP, CRC
Referenced in:

e Modbus Technical Reference - Modbus TCP
e Modbus Technical Reference - Modbus RTU

® Modbus Protocol - Message Structure

Addressing Model

The Modbus addressing scheme for accessing data elements. Modbus uses two parallel addressing systems:

1. Protocol Addressing: 0-based addresses used in actual messages (0-65535)

2. Public Addressing: 1-based addresses with data type prefix used in documentation (e.g., 40001-465535 for holding
registers)
Important: Protocol address = Public address - prefix - 1
See also: Off-By-One Error, Protocol Addressing, Public Addressing
Referenced in:

e Modbus Technical Reference - Off-By-One Addressing

® Modbus Protocol - Addressing

Asynchronous Serial Transmission

Serial communication method where data is transmitted without a shared clock signal. Each character is framed with start and stop
bits. Used in Modbus RTU over RS-232, RS-485, and RS-422.

Common parameters:

e Baud rate: 9600, 19200, 38400, 57600, 115200
e Data bits: 8

e Parity: None, Even, Odd
e Stop bits: 1 or 2

Referenced in:

e Modbus Technical Reference - RS-485

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 164 / 190

e Modbus Technical Reference - Modbus RTU

® Troubleshooting - Serial Communication

Baud Rate

The rate at which symbols (bits) are transmitted over a serial line, measured in bits per second (bps). Higher baud rates allow faster
communication but require better quality cabling and termination.

Common Modbus baud rates:

e 9600: Default, most reliable, long distances
® 19200: Good balance

e 38400: Faster, requires quality wiring

e 57600: High speed, shorter distances

® 115200: Maximum speed, excellent installation required

Referenced in:

® Modbus Technical Reference - Baud Rate Selection
® Getting Started - Connection Settings
e Troubleshooting - RS-485

Big Endian

Byte ordering where the most significant byte (MSB) is stored or transmitted first. Modbus specification mandates big endian byte

order for addresses and data values.

Example: Value 0x1234 is transmitted as 0x12, 0x34

For 32-bit values, word order also matters - see Byte Ordering.
Referenced in:

® Modbus Technical Reference - Byte Ordering

® Modbus Protocol - Data Encoding

Broadcast

A Modbus message sent to all devices on a network (address 0). Slaves execute the command but do not respond. Used for time

synchronization and parameter updates to multiple devices.
Limitations:

e No response expected or given
e Only valid for write operations
e (Client has no confirmation of success

e Rarely used in Modbus TCP

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 165/ 190

Referenced in:

e Modbus Technical Reference - Multi-Drop Networks

e Modbus Protocol - Function Codes

Byte Count

A field in Modbus messages indicating the number of data bytes that follow. Used in responses and multi-byte write requests to
specify the payload length.

Example: In Read Holding Registers response, Byte Count = Quantity of Registers x 2
Referenced in:

e Modbus Protocol - Function Codes

Byte Ordering (Endianness)

The sequence in which bytes are arranged in multi-byte data types. Modbus has two aspects of byte ordering:

1. Byte Order within each register: Big endian (MSB first) per spec

2. Word Order across registers: For 32-bit/64-bit values

Four possible 32-bit combinations:

ABCD (Big/Big): Modbus standard

DCBA (Little/Little): Fully reversed

BADC (Big/Little): Byte swap

CDAB (Little/Big): Word swap

See also: Big Endian, Little Endian
Referenced in:

® Modbus Technical Reference - Byte Ordering

e Modbus Protocol - Data Types

Client

The device that initiates Modbus requests (formerly called "master"). The client sends queries to servers and processes their
responses. In most systems, there is one client and one or more servers.

Typical clients: SCADA systems, PLCs (when reading from other devices), HMIs
See also: Server, Master
Referenced in:

e Modbus Client - Overview

e Modbus Protocol - Client-Server Model

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 166 / 190

Coil
A single-bit read/write data element in the Modbus data model. Historically represented discrete outputs in PLCs.

* Function Code 01 (0x01): Read Coils

* Function Code 05 (0x05): Write Single Coil

e Function Code 15 (0xOF): Write Multiple Coils
e Address Range: 0-65535 (protocol addressing)
e Public Address: 00001-065536 (prefix 0)

e Values: 0 (OFF) or 1 (ON), represented as 0x0000 or OxFFOO for writes

See also: Discrete Input, Holding Register
Referenced in:

e Modbus Protocol - Function Code 01
e Modbus Protocol - Function Code 05
e Modbus Protocol - Function Code 15

e Modbus Client - Reading Coils

CRC (Cyclic Redundancy Check)

A 16-bit error-detection code used in Modbus RTU to verify message integrity. The CRC-16 algorithm uses polynomial 0xA001.
Calculation:

e Computed over: Unit ID + Function Code + Data
e Notincluded in CRC: The CRC itself
e Byte order: Low byte first, high byte second

e Position: Last 2 bytes of RTU frame

Note: Modbus TCP does not use CRC; TCP's own checksums provide error detection.
See also: Modbus RTU, LRC
Referenced in:

e Modbus Technical Reference - Modbus RTU

® Troubleshooting - CRC Errors

Data Model

The Modbus data organization consisting of four primary tables:

Data Type ﬂ Public Address Prefix

Coils Read/Write 1 bit OxxXX

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 167 / 190

Discrete Inputs Read-Only 1 bit TXXXX
Input Registers Read-Only 16 bits 3XXXX

Holding Registers Read/Write 16 bits AxXXXX

Each table can contain up to 65,536 elements (0-65535 in protocol addressing).
Referenced in:

e Modbus Protocol - Data Model

e Modbus Technical Reference - Data Types

Diagnostic Function
Function Code 08 (0x08) provides tests for checking communication systems and internal device status. Serial line devices only.
Sub-functions include:

e 00: Return Query Data (loopback test)

e 01: Restart Communications

e 04: Force Listen Only Mode

e 10: Clear Counters and Diagnostic Register

e 11-18: Return various counters (message count, error count, etc.)

Referenced in:

e Modbus Protocol - Function Code 08

Discrete Input

A single-bit read-only data element in the Modbus data model. Historically represented physical inputs in PLCs.

* Function Code 02 (0x02): Read Discrete Inputs
® Address Range: 0-65535 (protocol addressing)
e Public Address: 10001-165536 (prefix 1)

® Values: 0 (OFF) or 1 (ON)

See also: Coil, Input Register
Referenced in:

e Modbus Protocol - Function Code 02

® Modbus Client - Reading Discrete Inputs

Exception Code

A 1-byte value returned in an exception response indicating the specific error condition. Defined in the Modbus specification.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 168 / 190

Common exception codes:

I

01 lllegal Function Function code not supported
02 lllegal Data Address Address doesn't exist

03 lllegal Data Value Value in query data field invalid
04 Server Device Failure Unrecoverable error occurred
05 Acknowledge Long operation in progress

06 Server Device Busy Busy processing command

08 Memory Parity Error Extended file area parity error
0A Gateway Path Unavailable Gateway cannot allocate path
0B Gateway Target Device Failed to Respond No response from target

Referenced in:

e Modbus Protocol - Exception Responses

® Troubleshooting - Exception Codes

Exception Response

A Modbus response indicating an error occurred while processing a request. An exception response has:

1. Function Code: Original function code + 0x80 (sets MSB to 1)

2. Exception Code: 1-byte error code

Example: Request with function code 0x03, error — Response with 0x83 + exception code
See also: Exception Code
Referenced in:

e Modbus Protocol - Exception Responses

® Troubleshooting - Understanding Exceptions

FIFO (First-In-First-Out) Queue

A data buffer where the first value written is the first value read. Function Code 24 (0x18) reads the contents of a FIFO queue without

clearing it.

e Maximum 31 queued data registers
e Queue count register returned first

e Then queued data registers

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 169/ 190

e If queue exceeds 31, exception code 03 returned

Referenced in:

e Modbus Protocol - Function Code 24

Function Code

A 1-byte field in the Modbus PDU identifying the requested action. Valid codes are 1-255, with 128-255 reserved for exception
responses.

Function code categories:

e Public Function Codes: Well-defined, documented, standardized
e User-Defined: 65-72 and 100-110

e Reserved: Used by some vendors for legacy products

Common function codes:

e Lo o

01 (0x01) Read Coils Read 1-2000 coils
02 (0x02) Read Discrete Inputs Read 1-2000 discrete inputs

03 (0x03) Read Holding Registers Read 1-125 holding registers

04 (0x04) Read Input Registers Read 1-125 input registers
05 (0x05) Write Single Coil Write 1 coil

06 (0x06) Write Single Register Write 1 register

15 (OxOF) Write Multiple Coils Write 1-1968 coils

16 (0x10) Write Multiple Registers Write 1-123 registers

Referenced in:

e Modbus Protocol - Function Codes

e Modbus Technical Reference - Modbus Protocol Variants

Gateway

A device that translates between different Modbus networks or protocols. Common scenarios:

e Modbus TCP ~ Modbus RTU: Bridge Ethernet to serial
e Multi-client aggregation: Multiple TCP clients to single RS-485 master

e Protocol translation: BACnhet « Modbus, OPC ~ Modbus

Challenges:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 170/ 190

e Data staleness when RTU device offline
e Performance bottlenecks
e Configuration complexity

e Exception codes OA and 0B indicate gateway issues

See also: Exception Code
Referenced in:

e Modbus Technical Reference - Gateways

e Troubleshooting - Gateway Issues

HDLC (High-Level Data Link Control)

A bit-oriented code-transparent synchronous data link layer protocol. Used in Modbus Plus networks.
Referenced in:

e Modbus Technical Reference - Modbus Protocol Variants

Holding Register
A 16-bit read/write data element in the Modbus data model. The most commonly used register type for storing configuration and
process values.
* Function Code 03 (0x03): Read Holding Registers
* Function Code 06 (0x06): Write Single Register
® Function Code 16 (0x10): Write Multiple Registers
® Function Code 22 (0x16): Mask Write Register
e Function Code 23 (0x17): Read/Write Multiple Registers
e Address Range: 0-65535 (protocol addressing)
e Public Address: 40001-465536 (prefix 4)
e Size: 16 bits (2 bytes)
e Range: 0-65535 (unsigned) or -32768 to +32767 (signed)

See also: Input Register, Data Types
Referenced in:

e Modbus Protocol - Function Code 03
e Modbus Protocol - Function Code 06
e Modbus Protocol - Function Code 16

® Modbus Client - Reading/Writing Registers

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 171/ 190

Input Register

A 16-bit read-only data element in the Modbus data model. Typically used for analog inputs and measurements.

¢ Function Code 04 (0x04): Read Input Registers
® Address Range: 0-65535 (protocol addressing)
e Public Address: 30001-365536 (prefix 3)

® Size: 16 bits (2 bytes)

e Access: Read-only

See also: Holding Register, Discrete Input
Referenced in:

e Modbus Protocol - Function Code 04

e Modbus Client - Reading Input Registers

Inter-Character Timeout

The maximum time allowed between characters within a single Modbus RTU message. If exceeded, the message is considered
incomplete and discarded by the slave.

Typical value: 1.5 character times

e At 9600 baud: ~1.5 ms
e At 19200 baud: ~0.75 ms

See also: Inter-Frame Delay
Referenced in:

e Modbus Technical Reference - Message Timing

e Troubleshooting - Timing Issues

Inter-Frame Delay

The minimum silence time required between Modbus RTU messages. Allows slaves to process the previous message before

receiving the next.
Minimum value: 3.5 character times

e At 9600 baud: ~3.5 ms
e At 19200 baud: ~1.75 ms

Master must wait this long before sending the next message.
See also: Inter-Character Timeout
Referenced in:

e Modbus Technical Reference - Message Timing

e Troubleshooting - Timing Issues

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 172/ 190

Little Endian

Byte ordering where the least significant byte (LSB) is stored or transmitted first. Opposite of Modbus specification, but some
devices use it.

Example: Value 0x1234 is transmitted as 0x34, 0x12

Note: Not standard Modbus. Causes compatibility problems.
See also: Big Endian, Byte Ordering

Referenced in:

® Modbus Technical Reference - Byte Ordering

e Troubleshooting - Data Interpretation

LRC (Longitudinal Redundancy Check)

A simple checksum used in Modbus ASCII. Calculated as the two's complement of the sum of all bytes, keeping only the least
significant byte.

Note: Modbus ASCll is rarely used. Use Modbus RTU or TCP instead.
See also: CRC
Referenced in:

e Modbus Technical Reference - Modbus ASCII

Listen Only Mode

A special diagnostic mode (Function Code 08, Sub-function 04) where a device monitors Modbus traffic but does not respond to any
messages. Used to isolate malfunctioning devices.

Characteristics:

e Device monitors all traffic
* No responses sent (even for addressed messages)
e No actions taken

e Can only exit via Restart Communications Option (FC 08, Sub-function 01)

Referenced in:

e Modbus Protocol - Diagnostics

M

Master (Deprecated)

Legacy term for the device that initiates Modbus communication. In modern terminology, use Client instead.

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 173/ 190

The master/slave terminology has been replaced with client/server to better reflect the request/response nature and avoid
problematic language.

See also: Client, Server
Referenced in:

e Modbus Protocol - Terminology

MBAP (Modbus Application Protocol Header)

The 7-byte header used in Modbus TCP to encapsulate the PDU:

Transaction ID 2 bytes Matches request with response

Protocol ID 2 bytes Always 0x0000 for Modbus
Length 2 bytes Bytes to follow (Unit ID + PDU)
Unit ID 1 byte Modbus slave address

Total MBAP header: 7 bytes + PDU
See also: ADU, PDU
Referenced in:

e Modbus Technical Reference - Modbus TCP
e Modbus Protocol - Modbus TCP

MEI (Modbus Encapsulated Interface)

A transport mechanism for tunneling service requests inside Modbus PDUs. Function Code 43 (0x2B) with MEI Type field.
MEI Types:

* Type 13 (0x0D): CANopen General Reference
e Type 14 (0xOE): Read Device Identification
* Types 0-12, 15-255: Reserved

Referenced in:

e Modbus Protocol - Function Code 43

Modbus ASCII

A variant of Modbus RTU where all data is encoded as ASCII hexadecimal characters. Each byte becomes two ASCII characters.
Characteristics:

e Messages start with : (colon)
e Messages end with \r\n (CR+LF)
e Uses LRC instead of CRC

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 174 / 190

e Double the message length of RTU

e Human-readable but inefficient

Recommendation: Don't use Modbus ASCIIl. Use Modbus RTU or TCP instead.
Referenced in:

e Modbus Technical Reference - Modbus ASCII

Modbus RTU
The binary serial implementation of Modbus. Most common serial protocol variant.
Characteristics:

e Binary encoding (compact)

e CRC-16 for error detection

e Physical layer: RS-232, RS-485, RS-422
e 1 master + up to 247 slaves (RS-485)
e Baud rates: typically 9600-115200

Message structure: [Unit ID][Function Code][Data][CRC]
See also: ADU, CRC
Referenced in:

e Modbus Technical Reference - Modbus RTU

e Getting Started - RTU Configuration

Modbus TCP

The Ethernet/IP implementation of Modbus. Uses TCP port 502.
Characteristics:

e Standard TCP/IP transport

e MBAP header instead of Unit ID and CRC
e No CRC (TCP provides error detection)

e Multiple clients possible

e Fast (millisecond response times)

® Long distance (global via Internet)

Message structure: [MBAP Header][Function Code][Data]
See also: VIBAP, ADU
Referenced in:

e Modbus Technical Reference - Modbus TCP
® Getting Started - TCP Configuration
e Modbus Client - TCP Client

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 175/ 190

Multi-Drop Network

A network topology where multiple devices share the same communication bus. Used in RS-485 Modbus RTU.
Characteristics:

e One master, multiple slaves (up to 247)
e Each slave has unique address (1-247)
e Address 0 is broadcast

e All slaves hear all messages

e Only addressed slave responds

e Bandwidth shared among all devices

See also: RS-485, Unit ID
Referenced in:

® Modbus Technical Reference - Multi-Drop Networks

® Troubleshooting - Multi-Drop Issues

o

Off-By-One Error

The common confusion between Modbus public addressing (1-based with prefix) and protocol addressing (0-based without prefix).
Example: Holding Register public address 40001 = protocol address 0 (with function code 0x03)

Conversion formula:

Protocol Address = Public Address - Prefix - 1

Public 40108 - Remove "40" prefix - 108 - Subtract 1 -» Protocol 107

See also: Addressing Model, Protocol Addressing, Public Addressing
Referenced in:

e Modbus Technical Reference - Off-By-One

e Getting Started - Understanding Addresses

Parity

An error-detection method in serial communication. A parity bit is added to each character.

Parity settings:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 176 / 190

e None: No parity bit (most common for Modbus)
e Even: Parity bit set so total 1s is even

e Odd: Parity bit set so total 1s is odd

Important: All devices on network must use same parity setting.
Referenced in:

® Getting Started - Serial Settings

e Troubleshooting - Serial Issues

PDU (Protocol Data Unit)

The core Modbus message independent of transport layer. Contains:
Structure: [Function Code][Data]
Maximum PDU size: 253 bytes

e Inherited from first Modbus serial line implementation

e Maximum RS-485 ADU = 256 bytes

e PDU = 256 - Unit ID (1) - CRC (2) = 253 bytes
Modbus TCP: MBAP (7 bytes) + PDU (253 bytes) = 260 bytes maximum
See also: ADU, Function Code
Referenced in:

e Modbus Protocol - PDU Structure

® Modbus Technical Reference - Message Structure

Protocol Addressing

The 0-based addressing scheme used in actual Modbus messages. Addresses range from 0 to 65535.

No data type prefix - the function code determines data type.

Example: To access holding register public address 40001, use protocol address 0 with function code 0x03.
See also: Public Addressing, Off-By-One Error

Referenced in:

® Modbus Technical Reference - Protocol Addressing

* Modbus Protocol - Addressing

Public Addressing

The 1-based addressing scheme with data type prefix used in documentation and HMI screens. Human-friendly but not used in
actual messages.

Format: [Data Type Prefix][Address starting from 1]

Prefixes:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 177 / 190

e Oxxxx: Coils (00001-065536)

e Txxxx: Discrete Inputs (10001-165536)

e 3xxxx: Input Registers (30001-365536)

e 4xxxx: Holding Registers (40001-465536)

5-digit vs 6-digit: Original 5-digit format supports up to 9,999 elements. 6-digit format (with leading zero) supports full 65,536
range.

See also: Protocol Addressing, Off-By-One Error

Referenced in:

® Modbus Technical Reference - Public Addressing

® Getting Started - Address Formats

Q

Quantity

The number of data elements (coils, inputs, or registers) to read or write in a single operation.
Limits vary by function code:

e Read Coils/Discrete Inputs: 1-2000
e Read Holding/Input Registers: 1-125
* Write Multiple Coils: 1-1968

e Write Multiple Registers: 1-123

Note: Limited by maximum PDU size of 253 bytes.
Referenced in:

e Modbus Protocol - Function Codes

Register

A 16-bit data storage element in Modbus. Two types:

¢ Holding Registers: Read/write (Function codes 03, 06, 16, 22, 23)

* Input Registers: Read-only (Function code 04)

See also: Holding Register, Input Register
Referenced in:

e Modbus Protocol - Data Model

e Modbus Client - Working with Registers

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 178 / 190

Request

A Modbus message sent from client to server asking for an operation to be performed.
Contains:

e Function code (what operation)
e Data address (where)
e Quantity (how many)

e Additional data (for write operations)

See also: Response, Client
Referenced in:

e Modbus Protocol - Request/Response

Response

A Modbus message sent from server to client in reply to a request.
Two types:
1. Normal Response: Contains requested data or confirmation

o Function code echoed from request

o Response data

2. Exception Response: Indicates error

o Function code = request function code + 0x80

o Exception code

See also: Request, Exception Response
Referenced in:

® Modbus Protocol - Request/Response

® Modbus Protocol - Exception Responses

RS-232

A point-to-point serial communication standard. Originally designed for modem connections.
Characteristics:

e Maximum distance: ~50 feet (15 m)
e Point-to-point only (2 devices)

e \oltage levels: £3V to +15V

e Connectors: DB9 or DB25

® Minimum 3-wire: TX, RX, GND

Limitations:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 179/ 190

e Cannot multi-drop
e Limited distance

e Susceptible to noise

Referenced in:

e Modbus Technical Reference - RS-232

e Troubleshooting - RS-232 Issues

RS-422

A differential serial standard similar to RS-485 but full-duplex with separate TX/RX pairs.
Characteristics:

e 4-wire (separate TX and RX pairs)
e Full-duplex
e Distance: up to 4000 feet

® One transmitter, up to 10 receivers

Note: Less common for Modbus; most use RS-485 (half-duplex).
Referenced in:

e Modbus Technical Reference - RS-422

RS-485

The workhorse serial standard for industrial multi-drop Modbus networks.
Characteristics:

¢ Differential signaling (2 wires: A and B)

e Actually needs 3 conductors: A, B, and ground reference
e Distance: up to 4000 feet (1200 m)

e Multi-drop: up to 32-128 devices

e Termination: 120Q) resistors at both ends only

e Topology: Linear trunk (no star!)

Common issues:

e Wrong polarity (A/B reversed)
® Missing termination
e Star topology (forbidden)

® Missing ground reference

See also: Multi-Drop Network, Termination
Referenced in:

e Modbus Technical Reference - RS-485

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 180/ 190

® Troubleshooting - RS-485 Problems

Scaling

The practice of multiplying values by a factor to represent decimals using integer registers.
Common scaling factors:

® Temperature: x10 (285 = 28.5°C)
e Voltage: x10 (2450 = 245.0V)

e Current: x100 (1234 = 12.34A)

e Energy: x100 or x1000

Important: Scaling is device-specific. Always check the device manual.
Referenced in:

e Modbus Technical Reference - Scaling

e Troubleshooting - Wrong Values

Server

The device that responds to Modbus requests (formerly called "slave"). The server executes commands from clients and returns
responses.

Typical servers: PLCs, drives, meters, I/0 modules, sensors
See also: Client, Slave
Referenced in:

e Modbus Protocol - Client-Server Model

e Simulator - Server Configuration

Slave (Deprecated)

Legacy term for the device that responds to Modbus communication. In modern terminology, use Server instead.

The master/slave terminology has been replaced with client/server to better reflect the request/response nature and avoid
problematic language.

See also: Server, Unit ID
Referenced in:

e Modbus Protocol - Terminology

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 181/ 190

TCP/IP (Transmission Control Protocol/Internet Protocol)
The standard Internet protocol suite. Modbus TCP uses TCP/IP for reliable, connection-oriented communication over Ethernet.
Modbus TCP specifics:

e Standard port: 502
e Connection-oriented (TCP)
e Reliable delivery

e Error detection via TCP checksums

See also: Modbus TCP, MBAP
Referenced in:

e Modbus Technical Reference - Modbus TCP

e Getting Started - TCP Connection

Termination Resistor

A 120Q) resistor placed at both ends of an RS-485 trunk to absorb signal reflections and prevent ringing.
Critical requirements:

e Value: 120Q (matches cable characteristic impedance)
e Power: 0.25W sufficient

e |ocation: Both ends of trunk ONLY

e Never in the middle

e Never more than 2 total

Without termination:

e Signals reflect off cable ends

e Reflections cause errors

e Especially problematic at high baud rates
See also: RS-485
Referenced in:

e Modbus Technical Reference - Termination

e Troubleshooting - RS-485 Wiring

Timeout

The maximum time a client waits for a server response before considering the request failed.
Typical timeout values:

e Modbus TCP: 1-5 seconds

e Modbus RTU: 100ms - 2 seconds (depends on baud rate and network size)

Timeout too short: False failures due to legitimate delays Timeout too long: Slow detection of actual failures

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 182/ 190

Referenced in:

® Modbus Client - Timeout Settings

e Troubleshooting - Timeout Issues

Transaction

A complete Modbus communication cycle: request from client — processing by server — response to client.
Components:

1. Client sends request

2. Server receives and validates

3. Server performs action

4. Server sends response (or exception)

5. Client receives and processes response
Transaction ID: In Modbus TCP, a 2-byte identifier that matches requests with responses, allowing multiple outstanding
transactions.
See also: MBAP, Request, Response
Referenced in:

® Modbus Protocol - Transaction Processing

e Modbus Technical Reference - Modbus TCP

Unit ID (Slave Address)

A 1-byte field identifying the target Modbus device.
Address ranges:

e 0: Broadcast (all devices, no response)
e 1-247: Individual device addresses

e 248-255: Reserved

In Modbus RTU: Part of the ADU, included in CRC calculation
In Modbus TCP: Part of MBAP header, not in CRC (no CRC in TCP)

e Typically 1 for single device
e Allows multiple Modbus devices behind single IP (gateway scenario)

e OxFF (255) for broadcast (rarely used in TCP)

Important: Each device on multi-drop network must have unique address.
See also: Multi-Drop Network, Broadcast

Referenced in:

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 183/ 190

®* Modbus Protocol - Unit ID
e Getting Started - Device Addressing

e Discovery - Address Scanning

Vv

Vendor-Specific Function Codes

Function codes in ranges 65-72 and 100-110 reserved for user/vendor-defined functions.
Characteristics:

* Not standardized
e Device manufacturer specific
e No guarantee of uniqueness

e Consult device manual for details

Public function codes: 1-64, 73-99, 111-127 (standardized or reserved)
Referenced in:

e Modbus Protocol - Function Code Categories

w

Word

A 16-bit data unit (2 bytes). In Modbus:

e Registers are word-sized (16 bits)
e Big endian: High byte first, low byte second
e Range: 0-65535 (unsigned) or -32768 to +32767 (signed)

Word order: For multi-word data types (32-bit, 64-bit), determines which register contains high word vs low word.
See also: Byte Ordering, Register
Referenced in:

e Modbus Technical Reference - Data Types

® Modbus Technical Reference - Byte Ordering

Write Operation

A Modbus function that modifies data on the server (coils or registers).
Write function codes:

e FC 05: Write Single Coll
e FC 06: Write Single Register

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 184 / 190

Response: Server echoes the request (or returns exception)

See also: Coil, Holding Register

FC 15: Write Multiple Coils

FC 16: Write Multiple Registers

FC 22: Mask Write Register

FC 23: Read/Write Multiple Registers

Referenced in:

Cross-Reference Index

Modbus Protocol - Write Functions

Modbus Client - Writing Data

By Manual Section

Getting Started

ADU

Baud Rate

Client

Modbus RTU
Modbus TCP
Off-By-One Error
Parity

Protocol Addressing
Public Addressing
Server

TCP/IP

Unit ID

Modbus Protocol

Coil

Data Model
Discrete Input
Exception Code
Exception Response
Function Code
Holding Register
Input Register
MBAP

PDU

Request

Chipkin Modbus Explorer (CAS-1000-20)

Last Updated: January 22, 2026

Page 185/ 190

Modbus Technical Reference

Response
Transaction

Write Operation

Addressing Model

Asynchronous Serial Transmission

Big Endian
Byte Ordering
CRC

Gateway

Inter-Character Timeout

Inter-Frame Delay
Little Endian
Modbus ASCII
Multi-Drop Network
Off-By-One Error
RS-232

RS-422

RS-485

Scaling

Termination Resistor

Word

Modbus Client

Client

Coil

Discrete Input
Holding Register
Input Register
Timeout

Write Operation

Simulator

Exception Code
Function Code

Server

Discovery

Broadcast
Multi-Drop Network

Unit ID

Chipkin Modbus Explorer (CAS-1000-20)

Last Updated: January 22, 2026

Page 186/ 190

Troubleshooting

e Baud Rate

e CRC

® Exception Code

® Exception Response
* Gateway

e Inter-Character Timeout
e Inter-Frame Delay

® Parity

e RS-232

e RS-485

e Scaling

e Termination Resistor

e Timeout
Abbreviations
ADU Application Data Unit
ASCII American Standard Code for Information Interchange
CRC Cyclic Redundancy Check
FC Function Code
FIFO First-In-First-Out
HDLC High-Level Data Link Control
HMI Human-Machine Interface
I/0 Input/Output
IP Internet Protocol
LRC Longitudinal Redundancy Check
LSB Least Significant Bit/Byte
MAC Media Access Control
MBAP Modbus Application Protocol (Header)
MEI Modbus Encapsulated Interface
MSB Most Significant Bit/Byte
oSl Open Systems Interconnection
PDU Protocol Data Unit
Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 187 / 190

PLC Programmable Logic Controller

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition
TCP Transmission Control Protocol

VFD Variable Frequency Drive

Document version: 1.0
Last updated: Based on Modbus Application Protocol Specification V1.1b3 (April 26, 2012)

Appendix: Indexes

This appendix is generated automatically from the manual manifest.

Explorer Guides

e Introduction

e Getting Started

® Modbus Client

e Device Discovery
®* Modbus Simulator
® Troubleshooting

e Support

Troubleshooting Topics

e Triage Checklist: First Steps in Troubleshooting
e Troubleshooting Timeout Errors
e Decoding Modbus Exception Responses

® Investigating Garbled Data

Protocol Fundamentals

e Modbus Protocol Reference
®* Modbus Addressing
e Modbus Data Model

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026

Page 188 /190

* Modbus Message Structure

® Modbus Exception Responses

Function Codes

® FCO1 - Read Coils

e FCO2 - Read Discrete Inputs

® FCO3 - Read Holding Registers

® FCO4 - Read Input Registers

e FCO5 - Write Single Coil

e FCO06 - Write Single Register

® FCO8 - Diagnostics

e FC11 - Get Comm Event Counter
® FC15 - Write Multiple Coils

e FC16 - Write Multiple Registers
e FC23 - Read/Write Multiple Registers

e FC43 / MEIl 14 - Read Device Identification

Exception Codes

e Exception 01 - lllegal Function

e Exception 02 - lllegal Data Address

e Exception 03 - lllegal Data Value

® Exception 04 - Server Device Failure

e Exception 05 - Acknowledge

e Exception 06 - Server Device Busy

e Exception 07 - Negative Acknowledge

® Exception 08 - Memory Parity Error

e Exception 10 (Ox0A) - Gateway Path Unavailable

e Exception 11 (OxOB) - Gateway Target Device Failed to Respond

Other Appendices

e Glossary of Modbus Terms

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 189/ 190

Chipkin Modbus Explorer (CAS-1000-20) Manual Version 1.0.0 | Application Version 1.2.0

Chipkin Modbus Explorer (CAS-1000-20) Last Updated: January 22, 2026 Page 190/ 190

